What is the wagon's displacement when t=7.0s?

  • Thread starter Thread starter catherines
  • Start date Start date
  • Tags Tags
    Displacement
AI Thread Summary
The discussion revolves around calculating the displacement of a wagon being pulled by Superwoman with a force of 60.0 N at an angle of 35.0° and a mass of 25.0 kg. The acceleration of the wagon is determined to be 1.12 m/s², leading to a final velocity of 7.9 m/s after 7.0 seconds. The impact of air resistance, quantified as 15 J, is addressed in part (d), where the work done against the wagon is subtracted from the total energy to find the adjusted final velocity of 7.82 m/s. Clarification is sought regarding the negative work done by air resistance, which is understood to be considered in the context of total work over the 7 seconds. The final displacement of the wagon at t = 7.0 seconds remains the key calculation to be determined.
catherines
Messages
9
Reaction score
0
Superwoman was seen packing up a suspicious bundle into a wagon, which has a total mass of 25.0 kg and is at rest. She pulls the wagon towards the east with an applied force of 60.0 N, which makes an angle of 35.0° above the horizontal. The coefficient of friction is 0.100 between the wagon wheel and the ground.
a) Draw and label a free body diagram.
b) Calculate the acceleration of the wagon.
c) If the acceleration remains constant, what will the final velocity of the wagon be when t = 7.0s?
d) If the work done by air resistance is 15J, determine the final velocity of the wagon when t=7.0s.
e) What is the wagon's displacement when t=7.0s?

So I drew a FBD. And found that a=1.12 m/s^2 (by finding Fnormal using Fnety = Fnormal + Fapplied - Fgravity = 0 and then using Fnormal in Fnetx = Fapplied*cos35 - Ffriction. Then Fnetx = ma)

c) V=Vo +at
t = 7.0s
Vo = 0
a = 1.12
Therefore V = 7.9 m/s

d) ?? Here's the answer the teacher gave me, but I don't understand it:
1/2mv^2 -15 = 1/2mv2^2
1/2(25)(7.9)^2 -15 = 1/2(25)(V2^2)
765.125 = 1/2(25)(V2^2)
V2 = 7.82 m/s [E]

I don't get why the air resistance is subtracted from Work done at t=7.0s. Please help explain part d to me...thank you!
 
Physics news on Phys.org
By definition of work, W=\Delta E= \frac{1}{2}m\Delta\left( v^2 \right) = \frac{1}{2}mv_{f}^2 - \frac{1}{2}mv_{o}^2
Since you are giving W, then you solve for v_f.
 
Last edited:
Meaning that W is the sum of all the done work done, ie work done on the wagon (pulling), and work done against the wagon (air resistance). Since the latter is done against the wagon, it is considered to be negative work.
 
Are both velocities for t=7.0s?
 
catherines said:
Are both velocities for t=7.0s?

I'll butt in, since no one came back to this yet. Yes, it sounds like the question is stating that the total work done by air resistance is for those seven seconds. So the revised velocity in part (d) is also at t = 7.0 seconds.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top