Josh_K
- 2
- 0
\int \frac{3\sqrt{x^2-16}}{2x}
Let x = 4\sec\theta, dx = 4\sec\theta\tan\theta d\theta. \theta = asec(x/4)
\frac{3}{2}\int \frac{\sqrt{4^2(\sec^2\theta-1)}}{4\sec\theta}4\sec\theta\tan\theta d\theta
\frac{3}{2}\int \frac{\sqrt{\tan^2\theta}}{\sec\theta}4\sec\theta\tan\theta d\theta
\frac{4\times 3}{2}\int \tan^2\theta d\theta
as tan^2 = sec^2-1
6\int sec^2 d\theta - 6\int d\theta
6 \tan\theta - 6\theta
As \tan\theta = \frac{\sqrt{x^2-16}}{4}
6 \tan\theta - 6\theta = \frac{3}{2}\sqrt{x^2-16} - 6 arcsec\left(\frac{x}{4}\right) + C
I don't know what's wrong but when I plot it on graphmatica and derive it, it doesn't match with the original equation.
Let x = 4\sec\theta, dx = 4\sec\theta\tan\theta d\theta. \theta = asec(x/4)
\frac{3}{2}\int \frac{\sqrt{4^2(\sec^2\theta-1)}}{4\sec\theta}4\sec\theta\tan\theta d\theta
\frac{3}{2}\int \frac{\sqrt{\tan^2\theta}}{\sec\theta}4\sec\theta\tan\theta d\theta
\frac{4\times 3}{2}\int \tan^2\theta d\theta
as tan^2 = sec^2-1
6\int sec^2 d\theta - 6\int d\theta
6 \tan\theta - 6\theta
As \tan\theta = \frac{\sqrt{x^2-16}}{4}
6 \tan\theta - 6\theta = \frac{3}{2}\sqrt{x^2-16} - 6 arcsec\left(\frac{x}{4}\right) + C
I don't know what's wrong but when I plot it on graphmatica and derive it, it doesn't match with the original equation.