Where are these functions analytic?

  • Thread starter Thread starter Damascus Road
  • Start date Start date
  • Tags Tags
    Functions
Damascus Road
Messages
117
Reaction score
0
Greetings all, I have 2 functions:

\frac{1}{Rez} + \frac{1}{Imz}(z^{2}- \overline{z}^{2})

and

\frac{1}{Rez} + \frac{1}{i Imz}(z^{2}- \overline{z}^{2})

I have to find where they are analytic, how do I start this?
 
Last edited:
Physics news on Phys.org
A good place to start is to look up the definition of analytic :smile:

You may also want to look up "Cauchy-Riemann equations". They provide a simple test for the analyticity of a function.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top