Where to place a thin lens to couple a ray into a fiber

STINGERX
Messages
10
Reaction score
0

Homework Statement


i need to couple a ray (point source 15 deg) into a fiber with a small core diameter, the fiber located 8cm from the source.
the focal distance of the lens is 1.5cm
i need to choose 2 possible locations

Homework Equations

The Attempt at a Solution


first suggestion:
i placed the lense in the focal distance from the fiber

second suggestion:
i placed the lense in the middle between the source and the fiber (in this location the transverse magnification equal to -1 meaning that the point source will not get bigger,am i correct?
 
Physics news on Phys.org
Neither of those locations seems correct to me. The central location is an especially poor choice.

How are the focal length, the object distance, and the image distance all related?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top