Work Done by Elevator Cable in Sample Problem 7-6

AI Thread Summary
The work done by the gravitational force in the elevator problem is calculated as 59 kJ, while the work done by the elevator cable is found to be approximately -53 kJ, leading to a discrepancy with the textbook's answer of -47 kJ. The correct approach involves using Newton's second law to derive the tension in the cable and applying the work formula, resulting in the correct work done by the cable. The error in the initial calculation stemmed from incorrectly substituting values in the kinetic energy equation. The discussion highlights the importance of careful substitution and understanding the principles behind the calculations. The thread concludes with acknowledgment of the learning opportunity presented by the problem.
Soyuz42
Messages
2
Reaction score
4
Homework Statement
An elevator cab of mass m=500 kg is descending with speed v_i=4.0 m/s when its supporting cable begins to slip, allowing it to fall with constant acceleration vec{a}=vec{g}/5 (Figure (a)).
The answer to "(a) During a fall through a distance d=12 m, what is the work done on the cab by the gravitational force vec{F_g}?" is 59 kJ. The answer to "(b) During the 12 m fall, what is the work W_T done on the cab by the upward pull of vec{T} of the elevator cable?" is -47 kJ, and the answer is arrived at by using the free body diagram in Fig. (b) to solve for T, and then using that to solve for W_T. using equation (1) below. My question pertains to (b): why do I get a different answer when I use the work-kinetic energy theorem?
Relevant Equations
(1) W=F*d*cos(phi)
(2) K_f = K_i + W (Work-kinetic energy theorem)
(3) W_g = mgd*cos(phi), where phi is the angle between force and displacement.
Fig. 7-10.png

As stated, part (a) says that the work done by the gravitational force ##\vec{F_g}## is 59 kJ. If ##W_T## is the work done by the elevator cable during the 12 m fall, then using the work-kinetic energy theorem,
\begin{align*}
K_f -K_i &= W_g + W_T\\
\frac12m({v_f}^2 - {v_i}^2) &= 59000 + W_T\\
\frac12m(a\Delta d)=5886&=59000 + W_T\\
W_T &\approx -53 \text{ kJ},
\end{align*}
while the answer quoted in the text is ##-47## kJ. Why is there a discrepancy?


Answer to (b) in the textbook

"A key idea here is that we can calculate the work ##W_T## with Eq. 7-7 (##W=Fd\cos\phi##) if we first find an expression for the magnitude ##T## of the cable's pull. A second key idea is that we can find that expression by writing Newton's second law for components along the ##y## axis in Fig. 7-10b (##F_{\text{net},y} = ma_y##). We get $$T-F_g=ma.$$ Solving for ##T##, substituting ##mg## for ##F_g##, and then substituting the result in Eq. 7-7, we obtain $$W_T=Td\cos\phi = m(a+g)d\cos\phi.$$ Next, substituting ##-g/5## for the (downward) acceleration ##a## and then ##180^\circ## for the angle ##\phi## between the directions of forces ##\vec{T}## and ##m\vec{g}##, we find
\begin{align}
W_T&= m\left(-\frac{g}{5} + g\right) d\cos\phi = \frac45mgd\cos\phi\nonumber\\
&=\frac45(500\text{ kg})(9.8 \text{ m/s^2})(12\text{ m})\cos 180^\circ\nonumber\\
&= -4.70\times 10^4 \text{ J} = -47 \text{ kJ}.\tag{Answer}
\end{align}
(The question and figure are from sample problem 7-6, pg. 149 of Fundamentals of Physics 7e, by Halliday et al.)
 
Last edited:
Physics news on Phys.org
Never mind, the method was fine, but I incorrectly substituted ##a\Delta d##, instead of ##2a\Delta d##, for ##{v_f}^2 - {v_i}^2##. I would save face but I do not know how to delete this thread.
 
  • Like
Likes Steve4Physics and berkeman
Soyuz42 said:
Never mind, the method was fine, but I incorrectly substituted ##a\Delta d##, instead of ##2a\Delta d##, for ##{v_f}^2 - {v_i}^2##. I would save face but I do not know how to delete this thread.
No need to delete -- it's an interesting problem. Glad you figured it out.

Welcome to PhysicsForums! :smile:
 
  • Like
Likes SammyS, Steve4Physics and Soyuz42
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top