Work Done by Elevator Cable in Sample Problem 7-6

Click For Summary
SUMMARY

The work done by the elevator cable during a 12 m fall is calculated to be approximately -53 kJ, while the textbook states it is -47 kJ. This discrepancy arises from an incorrect substitution of the kinetic energy equation, where the user mistakenly used ##a\Delta d## instead of the correct ##2a\Delta d## for the change in kinetic energy. The correct calculation involves using Newton's second law and the work-energy theorem to derive the work done by the cable as ##W_T = \frac{4}{5}mgd\cos\phi##, leading to the accurate result of -47 kJ.

PREREQUISITES
  • Understanding of the work-kinetic energy theorem
  • Familiarity with Newton's second law of motion
  • Knowledge of gravitational force calculations
  • Ability to apply trigonometric functions in physics problems
NEXT STEPS
  • Study the work-energy theorem in detail
  • Learn about Newton's second law and its applications in dynamics
  • Explore gravitational force calculations in various contexts
  • Investigate the use of trigonometric functions in physics problems
USEFUL FOR

Students and educators in physics, particularly those focusing on mechanics and the application of the work-energy theorem in problem-solving scenarios.

Soyuz42
Messages
2
Reaction score
4
Homework Statement
An elevator cab of mass m=500 kg is descending with speed v_i=4.0 m/s when its supporting cable begins to slip, allowing it to fall with constant acceleration vec{a}=vec{g}/5 (Figure (a)).
The answer to "(a) During a fall through a distance d=12 m, what is the work done on the cab by the gravitational force vec{F_g}?" is 59 kJ. The answer to "(b) During the 12 m fall, what is the work W_T done on the cab by the upward pull of vec{T} of the elevator cable?" is -47 kJ, and the answer is arrived at by using the free body diagram in Fig. (b) to solve for T, and then using that to solve for W_T. using equation (1) below. My question pertains to (b): why do I get a different answer when I use the work-kinetic energy theorem?
Relevant Equations
(1) W=F*d*cos(phi)
(2) K_f = K_i + W (Work-kinetic energy theorem)
(3) W_g = mgd*cos(phi), where phi is the angle between force and displacement.
Fig. 7-10.png

As stated, part (a) says that the work done by the gravitational force ##\vec{F_g}## is 59 kJ. If ##W_T## is the work done by the elevator cable during the 12 m fall, then using the work-kinetic energy theorem,
\begin{align*}
K_f -K_i &= W_g + W_T\\
\frac12m({v_f}^2 - {v_i}^2) &= 59000 + W_T\\
\frac12m(a\Delta d)=5886&=59000 + W_T\\
W_T &\approx -53 \text{ kJ},
\end{align*}
while the answer quoted in the text is ##-47## kJ. Why is there a discrepancy?


Answer to (b) in the textbook

"A key idea here is that we can calculate the work ##W_T## with Eq. 7-7 (##W=Fd\cos\phi##) if we first find an expression for the magnitude ##T## of the cable's pull. A second key idea is that we can find that expression by writing Newton's second law for components along the ##y## axis in Fig. 7-10b (##F_{\text{net},y} = ma_y##). We get $$T-F_g=ma.$$ Solving for ##T##, substituting ##mg## for ##F_g##, and then substituting the result in Eq. 7-7, we obtain $$W_T=Td\cos\phi = m(a+g)d\cos\phi.$$ Next, substituting ##-g/5## for the (downward) acceleration ##a## and then ##180^\circ## for the angle ##\phi## between the directions of forces ##\vec{T}## and ##m\vec{g}##, we find
\begin{align}
W_T&= m\left(-\frac{g}{5} + g\right) d\cos\phi = \frac45mgd\cos\phi\nonumber\\
&=\frac45(500\text{ kg})(9.8 \text{ m/s^2})(12\text{ m})\cos 180^\circ\nonumber\\
&= -4.70\times 10^4 \text{ J} = -47 \text{ kJ}.\tag{Answer}
\end{align}
(The question and figure are from sample problem 7-6, pg. 149 of Fundamentals of Physics 7e, by Halliday et al.)
 
Last edited:
Physics news on Phys.org
Never mind, the method was fine, but I incorrectly substituted ##a\Delta d##, instead of ##2a\Delta d##, for ##{v_f}^2 - {v_i}^2##. I would save face but I do not know how to delete this thread.
 
  • Like
Likes   Reactions: Steve4Physics and berkeman
Soyuz42 said:
Never mind, the method was fine, but I incorrectly substituted ##a\Delta d##, instead of ##2a\Delta d##, for ##{v_f}^2 - {v_i}^2##. I would save face but I do not know how to delete this thread.
No need to delete -- it's an interesting problem. Glad you figured it out.

Welcome to PhysicsForums! :smile:
 
  • Like
Likes   Reactions: SammyS, Steve4Physics and Soyuz42

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K
Replies
10
Views
2K
Replies
6
Views
2K
Replies
21
Views
2K
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
7K