mbrmbrg
- 485
- 2
Nice, simple, straighforward problem:
j \cdot {-j}
Difficulty: I solved it two ways and got two answers.
\vec{a} \cdot \vec{b}=ab\cos\phi
So in this case, I should get j \cdot {-j}=(1)(-1)(cos(180^o))=(1)(-1)(-1)=1[/itex]<br /> <br /> However, using the formula \vec{a} \cdot \vec{b}=a_{x}b_{x}+a_{y}b_{y}+a_{z}b_{z}, I got j \cdot {-j}=a_{y}b_{y}=(1)(-1)=-1<br /> <br /> Can anyone tell me why?
j \cdot {-j}
Difficulty: I solved it two ways and got two answers.
\vec{a} \cdot \vec{b}=ab\cos\phi
So in this case, I should get j \cdot {-j}=(1)(-1)(cos(180^o))=(1)(-1)(-1)=1[/itex]<br /> <br /> However, using the formula \vec{a} \cdot \vec{b}=a_{x}b_{x}+a_{y}b_{y}+a_{z}b_{z}, I got j \cdot {-j}=a_{y}b_{y}=(1)(-1)=-1<br /> <br /> Can anyone tell me why?
Last edited: