I'll write out the problem again if that helps:
Real methane hydrate has a non-stoichiometric composition close to CH4•6H2O. At atmospheric pressure, methane hydrate decomposes at –81 °C. However, under high pressures (e.g. on the ocean floor) it is stable at much higher temperatures. Decomposition of methane hydrate produces gaseous methane and solid or liquid water depending on temperature.
2. Write down the equation of decomposition of 1 mole of CH4•6H2O producing solid water (ice) H2O(s).
The enthalpy of this process equals 17.47 kJ•mol-1. Assume that the enthalpies do not depend on temperature and pressure, the volume change upon decomposition of hydrate is equal to the volume of released methane, and methane is an ideal gas.
3. At what external pressure does decomposition of methane hydrate into methane and ice take place at –5 °C?
4. What is the minimum possible depth of pure liquid water at which methane hydrates can be stable? To answer this question, you should first deduce at which minimum temperature methane hydrate can coexist with liquid water, by choosing from 3 possibilities: 272.9 K, 273.15 K, 273.4 K.
Large methane hydrate stocks on the floor of Baikal lake, the largest freshwater lake in Russia and in the world, have been discovered in July 2009 by the crew of a deep-submergence vehicle «Mir-2». During the ascent from the depth of 1400 m methane hydrate samples started to decompose at the depth of 372 m.
5. Determine the temperature in Baikal lake at the depth of 372 m. The enthalpy of fusion of ice is 6.01 kJ•mol-1.
------
3 is straightforward because it is asking for the conditions required to make a reaction happen, given that the reaction was previously spontaneous at a given p,T of (192.15 K, 101300 Pa). But the confusion starts at 4. I really don't understand the scenario being proposed, and how it relates with the CH4•6H2O -> CH4 + H2O (s) reaction for which the two p,T sets we have (the initial given p,T of 192.15 K, 101300 Pa, and the solution to part 3, at 268.15 K) apply. And the same confusion grows with 5.
I think the problem is a fundamental questioning of whether one understands multi-component phase diagrams, how the Clausius-Clapeyron equation can be used for spontaneity conditions in any reactions and with various different conditions (e.g. 4 proposes that liquid water must also be present), etc. Any help on these topics and understanding them better would be much appreciated. (I have seen the solutions, but they do not clear up my haze about how the Clausius-Clapeyron equation is to be applied in a case like this, and how I should understand and analyse each scenario in the problems, which is the sort of understanding I am trying to build.)