Why do you integrate expressions for work + (hw problems)?

AI Thread Summary
A single conservative force acting on a 5.00-kg particle is described by the equation Fx = (2x + 4) N. To calculate the work done as the particle moves from x = 1.00 m to x = 5.00 m, integration of the force over the distance is necessary due to the force's variability. The correct calculation yields 40 J, achieved by properly setting the limits of the integral. Additionally, the discussion touches on the concept of integrating work expressions when forces change with distance, emphasizing its importance in physics. The thread concludes with a successful resolution of the initial misunderstanding regarding the integral limits.
Struggle Help
Messages
2
Reaction score
0
PHYSICS FORUMS RULES REQUIRE ONLY ONE PROBLEM POSTED PER THREAD.
Question:
A single conservative force acts on a 5.00-kg particle. The equation Fx = (2x + 4) N, where x is in
meters, describes this force. As the particle moves along the x-axis from x = 1.00 m to x = 5.00 m,
calculate (a) the work done by this force.

Work = Force * Distance.

(2*(5-1) +4) = 12N
12N * 4 = 48J.. (The correct answer is 40J).


If we integrate the equation (?) it results in (4)^2 + 4(4) = 32J (Still wrong answer).

First of all how do you get the right answer?

Second of all (more conceptual) why do you (in general) have to integrate work expressions? In what other situations do you have to integrate equations/ expressions?


Question 2:
A person stands on a scale in an elevator. As the elevator starts, the scale has a constant reading of 591
N. As the elevator later stops, the scale reading is 391 N. Assume the magnitude of the acceleration is
the same during starting and stopping, and determine (a) the weight of the person, (b) the person’s mass,
and (c) the acceleration of the elevator.

a) 491 N
b)50.1kg
c)2m/s^2

a) We can assume the person's weight didn't change, and the magnitude of acceleration is the same during stopping and starting (albeit in different directions I'm assuming).

When the elevator starts 3 forces are affecting the scale, Fg(gravity), Fn (normal force), Fe(force of elevator). When the elevator starts Fe is 100N downwards, and when the elevators stops Fe is 100N upwards. How would I in this situation determine the weight in Newtons of the person? Take the average of the two forces, during stopping and starting?

b) 491N / 9.8m/s^2 = 50/1kg

c)Not sure how to start this.

Question 3:
The Earth rotates about its axis with a period of 24.0 h. Imagine that the rotational speed can be
increased. If an object at the equator is to have zero apparent weight, (a) what must the new period be?
(b) By what factor would the speed of the object be increased when the planet is rotating at the higher
speed?

a)1.41h

b)17.1

This question is really challenging (for me at least) so I really just expect for the teacher to go over it in class. I would appreciate it if you could patch up my misunderstandings in the first two more basic problems I have posted.

This is my first time on this forum so please forgive me for any mistakes or transgressions I may have committed. I would really appreciate any help you may offer me.
 
Physics news on Phys.org
Struggle Help said:
Question:
A single conservative force acts on a 5.00-kg particle. The equation Fx = (2x + 4) N, where x is in
meters, describes this force. As the particle moves along the x-axis from x = 1.00 m to x = 5.00 m,
calculate (a) the work done by this force.

Work = Force * Distance.

(2*(5-1) +4) = 12N
12N * 4 = 48J.. (The correct answer is 40J).

If we integrate the equation (?) it results in (4)^2 + 4(4) = 32J (Still wrong answer).

First of all how do you get the right answer?

You aren't using the correct limits for your integral, which is why your calculation of work is wrong. Work = integral of Force w.r.t. distance.

Second of all (more conceptual) why do you (in general) have to integrate work expressions?

In this particular case, the amount of force varies with the distance x. If the force were constant, an integral would not be necessary.

In what other situations do you have to integrate equations/ expressions?

It depends. There is no way to answer this vague question.
 
SteamKing said:
You aren't using the correct limits for your integral, which is why your calculation of work is wrong. Work = integral of Force w.r.t. distance.

That makes sense, thanks.

I redid the integral, trying x*(X+4)

5*(5+4) - 1*(1+4) = 40. Thanks!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top