Why Does My Pendulum Pin Support Reaction Calculation Differ from 299N?

AI Thread Summary
The discussion centers on a calculation discrepancy regarding the support reaction force of a pendulum, which differs from the expected 299N. The user outlines their method, including calculating the mass moment of inertia, finding the center of mass, and determining angular acceleration. They apply D'Alembert's principle and Newton's laws to analyze forces acting on the pin. Ultimately, the user realizes they initially misreported the answer of 299N, confirming that their calculation method is valid and produces correct results. The conversation highlights the importance of careful verification in physics problem-solving.
cambo86
Messages
25
Reaction score
0
I've got a similar question to http://www.chegg.com/homework-help/questions-and-answers/pendulum-consists-10-kg-uniform-slender-rod-15-kg-sphere-pendulum-subjected-torque-m-50-n--q2722886 for homework. I applied the same steps I used on my homework question to this problem and I get a different answer to the 299N that they have.

Steps for my solution:
1. Calculate the mass moment of inertia around the pin.
2. Find the centre of mass of the pendulum.
3. With the total mass of the pendulum going through the centre of gravity, I calculated the angular acceleration.

\sum M = I_{0}\alpha
-M - l_{G}mg cos(45) = I_{0}\alpha

4. I calculated the normal and tangential accelerations.
a_{n} = \omega^{2}l_{G}
a_{t} = \alpha l_{G}

5. I used D'Alembert's principle (F - ma = 0) for the tangential forces and Newton (F = ma) for the normal forces. Then I can find the magnitude of forces on pin. (The dotted line arrow in the diagram above is the inertial force for D'Alembert's principle.)

I don't get the 299N stated as the answer in the original question but I can't see a problem with the steps I've gone through.
 
Last edited by a moderator:
Physics news on Phys.org
Sorry, I made a mistake in reproducing the answer of 299N. The above method works.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top