Why Does <n',l',m'|\hat{z}|n,l,m> Equal Zero Unless m=m'?

z2394
Messages
4
Reaction score
0

Homework Statement


I want to show that <n',l',m'|\hat{z}|n,l,m> = 0 unless m=m', using the form of the spherical harmonics.


Homework Equations


Equations for spherical harmonics


The Attempt at a Solution


Not sure how to begin here since there aren't any simple eigenvalues for \hat{z}|n,l,m>. I have a feeling that it may have something to do with normalization of the spherical harmonics (because they have Legendre polynomials that are P(cosΘ) = P(z) and would also give you a exp(imø)*exp(im'ø) term), but I have no idea how this could actually give you something for \hat{z}as an operator, or something you could actually use to figure out \hat{z}|n,l,m>.

Any help at all would be appreciated!
 
Physics news on Phys.org
You essentially have the answer already. In the coordinate basis, the operator ##\hat{z}## is represented by ##r\cos\theta##. Just write down the integral for the inner product and evaluate it.
 
  • Like
Likes 1 person
Thanks! I guess I was thinking about it in an operator sense, so it had not occurred to me to do it as an integral instead.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top