#### JesseM

Science Advisor

- 8,492

- 12

I would interpret the quantum state to refer to the set of probability amplitudes for different outcomes when you measure the system. If you look at the schematic diagram on this page, I think the idea is that at the moment "C" turns green, it now has the same amplitudes that "A" had when it was green, up until the moment it was disrupted by becoming entangled with "B". The diagram suggests that C's state only becomes identical to A's original state (before being disrupted)I don't know if he means this or not, but in my view the statement is perfectly correct, insofar as the "quantum state" is interpreted as "the way the observer doing the measurement would characterize the state of the faraway system". .

*after*the classical data has been transmitted from the location of A to the location of C.