Why is the Height at Point A Considered to be 2R in a Loop-the-Loop Problem?

AI Thread Summary
In the loop-the-loop problem, point A is considered to be at a height of 2R because it is located at the top of the circular path, where height is measured from the bottom of the loop. The speed of the bead at point A can be calculated using energy conservation principles, resulting in a speed of v = √29.4R. For the normal force at point A, the equation incorporates both the normal force and the weight of the bead, equating them to the centripetal force required for circular motion. The normal force is calculated to be 0.098 N for a bead with a mass of 5.00 g. Understanding these concepts is crucial for solving similar physics problems effectively.
Dr. Who
Messages
9
Reaction score
0
Question:-
A bead slides without friction around a loop-the-loop (Please click on the below link for diagram). The bead is released from a height h = 3.50R. (a) What is its speed at point A? (b) How large is the normal force on it if its mass is 5.00 g?
https://www.dropbox.com/s/wsd8g5q9d87undj/Loop Quest.png?dl=0

Homework Equations


(a) Potential Energy( at height 'h')=Kinetic Energy( at A)+Potential Energy( at A)

(b) Normal force + Weight of the bead = Centripetal force​

The Attempt at a Solution


(a)​
mgh=(½ mv2) + mghA
gh= (½ v2) + ghA
v2=2g( h- hA )=2(9.8)(3.5R-2R)=29.4R

v = √29.4R
(b)

N + mg = (mv2)/R
N = m {(v2/R)-(g)}
N = 0.005 {(29.4R/R)-(9.8)}
N = 0.098
My Professor has suggested the above solution but I want to know how can you take the height at point A to be 2R?
Similarly, I don't at all understand the equation for part(b) of the problem. Please explain your solutions with inline comments.

Thanks in advance! :)https://www.dropbox.com/s/wsd8g5q9d87undj/Loop%20Quest.png?dl=0
 
Last edited by a moderator:
Physics news on Phys.org
Can you attach the diagram? (For those of us who cannot access dropbox.)
 
Dr. Who said:
Question:-
A bead slides without friction around a loop-the-loop (Please click on the below link for diagram). The bead is released from a height h = 3.50R. (a) What is its speed at point A? (b) How large is the normal force on it if its mass is 5.00 g?
https://www.dropbox.com/s/wsd8g5q9d87undj/Loop Quest.png?dl=0

Homework Equations


(a) Potential Energy( at height 'h')=Kinetic Energy( at A)+Potential Energy( at A)

(b) Normal force + Weight of the bead = Centripetal force​

The Attempt at a Solution


(a)​
mgh=(½ mv2) + mghA
gh= (½ v2) + ghA
v2=2g( h- hA )=2(9.8)(3.5R-2R)=29.4R

v = √29.4R
(b)

N + mg = (mv2)/R
N = m {(v2/R)-(g)}
N = 0.005 {(29.4R/R)-(9.8)}
N = 0.098
My Professor has suggested the above solution but I want to know how can you take the height at point A to be 2R?
Similarly, I don't at all understand the equation for part(b) of the problem. Please explain your solutions with inline comments.

Thanks in advance! :)https://www.dropbox.com/s/wsd8g5q9d87undj/Loop%20Quest.png?dl=0
 

Attachments

  • Loop Quest.png
    Loop Quest.png
    6.4 KB · Views: 548
Dr. Who said:
My Professor has suggested the above solution but I want to know how can you take the height at point A to be 2R?
Point A is at the top of the circle of radius R. Height is measured from the bottom of the circle.

Dr. Who said:
Similarly, I don't at all understand the equation for part(b) of the problem.
It's just an application of Newton's 2nd law.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top