Why is Wavefunction Normalization on a Ring Done Using dPhi?

M-Speezy
Messages
14
Reaction score
0
When normalizing a Wavefunction for a particle on a ring why is the normalization only done as dPhi? It's a particle on a ring, so shouldn't it be r*dPhi? This is my thinking, but I do not find other solutions doing this, just ignoring the r part. I understand that for a ring it's just a constant but it still seems important.
 
Physics news on Phys.org
Is the wavefunction expressed in terms of a linear distance or in terms of the angle phi?

If you integrate the amplitude squared over the ring the result has to be 1 - the prefactor will depend on the integral you perform.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top