Why Pressure Reducing Valve doesn't prevent backflow

AI Thread Summary
Pressure reducing valves (PRVs) do not prevent backflow because they typically lack a tied diaphragm mechanism, which is essential for maintaining a closed system. Most PRVs operate with a check valve arrangement that can allow reverse flow if the inlet pressure drops below the discharge pressure. When this occurs, the pressure on the poppet can overcome the spring force, leading to backflow through the regulator. The need for a thermal expansion tank arises because if both inlet and outlet pressures are high, the valve remains closed, but variations in pressure can lead to unpredictable backflow situations. Understanding the relationship between inlet and discharge pressures is crucial for managing potential backflow risks.
Rob243
Messages
3
Reaction score
0
I am scratching my head on this question. PRV is supposed to create a closed system requiring a thermal expansion tank. But at the same time PRV is not considered a backflow preventer. How can both be true?
 
Engineering news on Phys.org
Hi Rob. Welcome to the board,
If you have a tied diaphragm, the pin holding the diaphragm to the valve will hold the valve shut when pressure goes up regardless of inlet pressure. The regulator in the picture below has the pin (STEM FEEDBACK MECHANISM) which ties the valve to the diaphragm.
31B392D72AE6CEABF3A89D3A712C17F0_25_Chapter_23-1.jpg


But most regulators don't have a tied diaphragm. Instead of a solid rod capable of pulling the valve plug shut, they simply have a check valve arrangement that gets pushed open when the diaphragm stem moved down such as in the picture below. Note the picture below has the outlet on the left and inlet on the right.

Regpg21.gif

So if the regulator is like the one you see in the second picture, and if the inlet pressure is lower than the discharge pressure, the fluid can open push the valve open and flow backwards through the regulator.

Most of the regulators I've seen are of the second type because the pin in the tied diaphragm type regulator is under significant tensile stress when discharge pressure is significantly higher than the set pressure and I've even seen instances where that pin breaks.
 
Thanks for the detailed explanation! So to summarize, the increased inlet pressure can cause backflow, but usually it won't. Or is the the other way round?
 
The other way around. If inlet pressure drops below discharge pressure, some regulators will allow flow in the reverse direction (from discharge to inlet) because essentially the poppet is a check valve pointing backwards. It checks in the forward direction (ie: shuts off flow) when inlet pressure is higher than discharge pressure but allows flow in the reverse direction (when discharge is higher than inlet pressure). It is only pushed open by the diaphragm which is how the downstream pressure is controlled.

Examine the second picture above. Note where the word "Poppet" is on the left side pointing to a small section of stem that sticks out of the poppet. Note the small section of stem doesn't touch the diaphragm. As the pressure on the diaphragm drops (outlet pressure or "set pressure" drops), the spring above the diaphragm pushes the diaphragm down which pushes on that small section of stem on the poppet, pushing the valve open. But if the pressure is too high for the diaphragm to be pushed down by the spring, it's held up as shown in the picture. And if the inlet pressure is lower than the discharge pressure, the pressure force on the poppet (pushing down) will overcome the spring force that's below the poppet (labeled "Valve Closing Spring") pushing up, and allow flow backwards through the regulator.
 
Ah! Great explanation! This also explains why thermal expansion tank is needed. If both inlet and outlet pressure are high, the valve remains closed. I guess it would really depend upon the difference in outlet vs inlet pressure, but since these aren't fixed there is no way to guarantee that backflow will always happen when outlet pressure starts increasing. But if inlet pressure drops significantly, it is likely to backflow.

Thank You!
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top