Work done by external forces on an equipotential surface.

AI Thread Summary
The discussion revolves around calculating the work done by an external force when moving an electron between two points on equipotential surfaces, specifically from point A (-200V) to point B (-400V). It emphasizes that work can be determined using the change in total energy, which includes potential energy, and relates this to the concept of electron volts (eV) as a unit of energy. The user arrives at a change in potential of -200V and calculates the work done as +3.2x10^-17 joules, indicating a correct understanding of the relationship between voltage and energy. The importance of including units in calculations is also highlighted for clarity and consistency. Overall, the user demonstrates a grasp of the principles involved in the problem.
nwyatt
Messages
5
Reaction score
0
The question I am having trouble with shows an image of 2 different conductors, one is at +300 volts, while the other is -600 volts with a few lines going in between which circle around. The points on the equipotential surface are on lines labeled as a (which lies on a -200V line) and the other point is b (lies on -400V line). The question is asking how much work is done by an external agent if the electron is moved from A to B? I have had so much trouble finding an equation to fit the information given. I also have no idea on how to approach this problem.
 
Physics news on Phys.org
nwyatt said:
The question I am having trouble with shows an image of 2 different conductors, one is at +300 volts, while the other is -600 volts with a few lines going in between which circle around. The points on the equipotential surface are on lines labeled as a (which lies on a -200V line) and the other point is b (lies on -400V line). The question is asking how much work is done by an external agent if the electron is moved from A to B? I have had so much trouble finding an equation to fit the information given. I also have no idea on how to approach this problem.

Welcome to the PF. The lines going from one conductor to the other are Electric Field lines. The Equipotential surfaces are at right angles to the Electric field lines.

When they ask for the work done in moving a charge between equipotential surfaces, you should use an equation that expresses the work done in terms of the force applied and the distance, or you can use the simpler relation that the work done is equal to the change in total energy of the particle, change in TE = change in (KE + PE). There is a reason the "equipotential" surfaces have the word "potential" in them. What is the relation between the voltage level and the potential energy of a charged particle?
 
Another hint -- look up an "electron volt" (eV). It's a unit of energy...
 
Your answer has helped me a great deal! So if my understanding is correct, the change is -200, and i would multiply this by -1.602x10^-19. Since it is an external force the sign changes to a +3.2x10^-17. I am not sure if my understanding is right, but that's the first thing that came to mind when you mentioned the difference in potential energies and when I looked up what an eV was.
 
nwyatt said:
Your answer has helped me a great deal! So if my understanding is correct, the change is -200, and i would multiply this by -1.602x10^-19. Since it is an external force the sign changes to a +3.2x10^-17. I am not sure if my understanding is right, but that's the first thing that came to mind when you mentioned the difference in potential energies and when I looked up what an eV was.

Good. I didn't check your work, mainly because you didn't include units with your post. It's always good to include units with your equations and answers, because that helps you to check the consistency of your work, and helps us to understand what you are posting. But otherwise, it sounds like you've taken the right approach to the question.
 
A Full Stack Development Program prepares students to create end to end web applications using front end as well as back-end technologies. The purpose is to get experience in creating user interfaces, managing databases, and conducting server-side activities, resulting in a thorough understanding of how web platforms work. This skill is essential since it allows developers to participate at every step of a project, enhancing critical thinking and productivity. registering in Full Stack...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top