Work Done by Increasing Plate Distance of Flat Capacitor

AI Thread Summary
The discussion focuses on calculating the work done when the distance between the plates of a flat capacitor is doubled after disconnecting from a voltage source. Initial capacitance is determined using the formula C= ε*A/d, leading to a capacitance of 4.43 x 10^-12 F at the initial distance. After increasing the distance, the new capacitance is calculated as 2.21 x 10^-12 F, with the charge remaining constant. The energy stored in both configurations is computed, resulting in a work done of 2.21 x 10^-8 J. The calculations are confirmed to be correct, although the accuracy of capacitance is noted to be affected by the plate size relative to their distance.
mmoadi
Messages
149
Reaction score
0

Homework Statement



Flat capacitor with a plates distanced d = 2 cm and the area A= 1 dm² are connected to a voltage U = 100 V. We disconnect the source of voltage and we increase the distance between the plates to twice the distance. How much work is done?

Homework Equations



C= ε*A/ d
Q= C*V
E= ½ Q*V
W= ΔE

The Attempt at a Solution



Calculating the capacitance at point A:
d(A)= 0.02 m, A= 0.01 m², ε= 8.85 × 10^-12 As/Vm

C(A)= ε*A/ d(A)
C(A)= [(8.85 x 10^-12 As/Vm)*(1 x 10^-2 m^2)]/ (2 x 10^-2 m)
C(A)= 4.43 x 10^-12 F

Calculating the capacitance at point B:
d(B)= 0.04 m, A= 0.01 m², ε= 8.85 × 10^-12 As/Vm

C(B)= ε*A/ d(B)
C(B)= [(8.85 x 10^-12 As/Vm)*(1 x 10^-2 m^2)]/ (4 x 10^-2 m)
C(B)= 2.21 x 10^-12 F

Calculating the charge on the plates:

Q= C(A)*V(A)
Q= (4.43 x10^-12)*100 V
Q= 4.43 x 10^-10 C

We know that the charge should be the same on both plate A and plate B so we use that piece of information to calculate the voltage of plate B:

V(B)= Q/ C(B)
V(B)= (4.43 x 10^-10 C)/ (2.21 x 10^-12 F)
V(B)= 200 V

Calculating the electrical energy in plate A:

E(A)= ½ Q*V(A)
E(A)= ½ (4.43 x10^10 C)* 100 V
E(A)= 2.22 x10^-8 J

Calculating the electrical energy in plate B:

E(B)= ½ Q*V(B)
E(B)= ½ (4.43 x10^10 C)* 200 V
E(B)= 4.43 x10^-8 J

Calculating the work:

W= ΔE
ΔE= E(B) – E(A)
ΔE= 4.43 x10^-8 J - 2.22 x10^-8 J
ΔE= 2.21 x 10^-8 J

Are my calculations correct?:confused:
Thank you for helping!:smile:
 
Physics news on Phys.org
Your calculations are correct. The distance of the plates compared to their size is too large
to make the capacitance calculation so accurate however.
 
:smile:Well, at least I cracked one problem!:biggrin:
Thank you for your help and HAPPY NEW YEAR:wink:!
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top