Work-Energy principle and spring force

AI Thread Summary
The discussion revolves around a block on a frictionless surface connected to a spring with a spring constant of 50 N/m, subjected to a constant applied force of 3 N. The initial calculations suggest that the block stops at a position of 0.06 m, but the solution manual indicates the correct stopping position is 0.12 m, derived from the work-energy principle. The confusion arises from the understanding of forces at the stopping point, where the net force is not zero despite the block's velocity being zero. Additionally, the maximum kinetic energy occurs when the block is at 0.06 m, highlighting the relationship between force, displacement, and energy in simple harmonic motion. This scenario illustrates the dynamics of spring systems under constant force conditions.
Nayef
Messages
3
Reaction score
0
A block lies on a horizontal frictionless surface, and the spring constant is 50 N/m. Initially, the spring
is at its relaxed length and the block is station ary at position x = 0 .Then an applied force with a constant magnitude of 3 N pulls the block in the positive direction of the x axis,stretching the spring until the block stops. When that stopping point is reached, what are (a) the position of the block, (b) block's position when its kinetic energy is maximum

Ws(work done by spring force) = -Wapp(work done by applied force) , Fs(spring force) = -kx , Ws = -1/2 kx2I tried to solve the solution by using the concept , that because our applied force is of constant magnitude and because the block stops after some displacement x , then at that point Fapp = -Fs
==> Fapp = -(-kx) ==> 3= 50x ==> x = 3/50 = 0.06
But the answer and method according to the solution manual is different, it is given below
This is a situation where Eq Ws = -Wapp , applies, so we have

Fx = 1/2 kx2
==> 3 x = 1/2 (50 )x2
which (other than the zero) gives x = (3.0/25) m = 0.12 m.
What is wrong with my logic, the second part of the question is clear to me but i am providing its answer according to the solution manual because it seems relevant part first and might help in understanding part first better.

With Kf = K considered variable and Ki = 0, Eq. 7-27 gives K = Fx – 1/2kx2. We take
the derivative of K with respect to x and set the resulting expression equal to zero, in
order to find the position xc which corresponds to a maximum value of K:
xc = F/k= (3.0/50) m = 0.060 m.
 
Physics news on Phys.org
Welcome to PF!
Nayef said:
A block lies on a horizontal frictionless surface, and the spring constant is 50 N/m. Initially, the spring
is at its relaxed length and the block is station ary at position x = 0 .Then an applied force with a constant magnitude of 3 N pulls the block in the positive direction of the x axis,stretching the spring until the block stops. When that stopping point is reached, what are (a) the position of the block, (b) block's position when its kinetic energy is maximum

Ws(work done by spring force) = -Wapp(work done by applied force) , Fs(spring force) = -kx , Ws = -1/2 kx2I tried to solve the solution by using the concept , that because our applied force is of constant magnitude and because the block stops after some displacement x , then at that point Fapp = -Fs
==> Fapp = -(-kx) ==> 3= 50x ==> x = 3/50 = 0.06


But the answer and method according to the solution manual is different, it is given below
This is a situation where Eq Ws = -Wapp , applies, so we have

==> 3 x = 1/2 (50 )x2
which (other than the zero) gives x = (3.0/25) m = 0.12 m.
What is wrong with my logic, the second part of the question is clear to me but i am providing its answer according to the solution manual because it seems relevant part first and might help in understanding part first better.

With Kf = K considered variable and Ki = 0, Eq. 7-27 gives K = Fx – 1/2kx2. We take
the derivative of K with respect to x and set the resulting expression equal to zero, in
order to find the position xc which corresponds to a maximum value of K:
xc = F/k= (3.0/50) m = 0.060 m.

The block stops (momentarily) means that its velocity is zero at that moment. But it does not mean that the net force is zero; the acceleration is zero instead.
When only a constant force acts on the block, connected to the spring, it will perform SHM when no dissipative force is present. When it has maximum kinetic energy, its acceleration is zero, and when the kinetic energy is zero, the magnitude of acceracion is maximum.
You can do a little experiment: gravity also means a constant force. Hang some weight on an elastic spring. Holding the other end of the spring, let the weight fall : the weight will vibrate between a maximum and minimum height.
 
Last edited:
  • Like
Likes Nayef
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top