Zeeman effect and defining the g_F Factor

TFM
Messages
1,016
Reaction score
0

Homework Statement



A hydrogen atom is interacting with an external magnetic field.
1. Derive the equation for the g_F-factor of the hyperfine states.

Homework Equations





The Attempt at a Solution



Okay, so the question asks to define the gF factor, however, I am not quite sure where to start.

I know firstly that it is based on the diagram of the vector arrows, as (crudely drawn) attached:

I also know the answer I need to get (it is mentioned in the notes):

g_F = g_J\frac{F(F + 1) + j(j + 1) - I(I +1)}{2F(F + 1)} + \frac{\mu_N}{\mu_B}g_I \frac{F(F + 1) + I(I + 1) - j(j +1)}{2F(F + 1)}

Also, for the gJ, it starts with:

H_J = \frac{\mu_N}{\hbar}(\hat{L} + 2\vec{S})\cdot \vec{B} = \frac{\mu_N}{\hbar}(\hat{J} + \vec{S})\cdot \vec{B}

and I know for gF, we have:

H_J = \frac{\mu_B}{\hbar}(\hat{L} + 2\vec{S})\cdot \vec{B} - g_I ({\frac{\mu_N}{\hbar} \vec{I}\cdot \vec{B})

Anyone got any suggestions about what I should do first?

TFM
 

Attachments

  • gF diag.jpg
    gF diag.jpg
    4.6 KB · Views: 552
Physics news on Phys.org
I suspect the approach would be to treat the external magnetic field as a perturbation to the internal magnetic field of the Hydrogen atom.

In other words, \vec{B} = \vec{B}_{Internal} + \vec{B}_{External}.

Considering \vec{B}_{Internal} first, we can find the orbital angular momentum (l), spin angular momentum (s),ml,ms (or J,m?) eigenstate of the Hamiltonian (possibly after some simplifying assumptions?).

We then apply first order perturbation theory for \vec{B}_{External}.

Since you know the energy, you should be able to get the g factor.

Hopefully, this is the way to go.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top