What is Field: Definition and 1000 Discussions

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.
The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and p-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements.
The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, this theory shows that angle trisection and squaring the circle cannot be done with a compass and straightedge. Moreover, it shows that quintic equations are, in general, algebraically unsolvable.
Fields serve as foundational notions in several mathematical domains. This includes different branches of mathematical analysis, which are based on fields with additional structure. Basic theorems in analysis hinge on the structural properties of the field of real numbers. Most importantly for algebraic purposes, any field may be used as the scalars for a vector space, which is the standard general context for linear algebra. Number fields, the siblings of the field of rational numbers, are studied in depth in number theory. Function fields can help describe properties of geometric objects.

View More On Wikipedia.org
  1. F

    Engineering Calculating the charge if the electric field density = 0

    Question: Relevant Equations: My attempt: Could someone please confirm my solution?
  2. Z

    On which objects can we apply Gauss' Law to find the electric field?

    What am I missing? I also don't get the title of the section: "Charge distributions with enough symmetry for Gauss's Law". I thought Gauss's Law was valid for any closed surface enclosing a charge. I don't understand what "enough symmetry" means in the title above. I get that with symmetry...
  3. Z

    Electric field is constant around charged infinite plane. Why?

    Using Gauss's Law By using a symmetry argument, we expect the magnitude of the electric field to be constant on planes parallel to the non-conducting plane. We need to choose a Gaussian surface. A straightforward one is a cylinder, ie a "Gaussian pillbox". The charge enclosed is...
  4. P

    A Einstein Field Equations: Spherical Symmetry Solution

    [Moderator's Note: Thread spin off due to topic and level change.] For a spherically symmetric solution, if SET components were written in terms a single one of 4 coordinates, in a way plausible for a radial coordinate, the I believe solving the EFE would require spherical symmetry of the...
  5. godiswatching_

    What is the effect of a 1 cm gap on the magnetic field in a solenoid?

    Hey, I was trying to figure out this problem. I got (a) using B = mu * NI/L but I'm not sure how to start the part about the magnetic field in the gap after the solenoid is ripped in half with 1 cm gap. Thanks for the help!
  6. F

    I Can a static EM field consist of photons?

    We can analysis a static EM field into Fourier serie. Then we can consider a static EM field as a superposition of many running EM wave. So why we could not consider static EM field as a superposition of many photons(maybe virtue photons)?
  7. P

    A How to read modern condensed matter field research

    Hi all, (I also posted this in the high energy theory section since my impression is there is a deep interplay between modern condensed matter theory and high energy theory). Some background: I'm interested in the interplay between condensed matter and high energy theory. I'm a bit more than...
  8. Boltzman Oscillation

    Help finding the magnetic field of a current loop

    Hi all, my work is shown on the attached image. The boxed equation is what I get to but I do not understand how to go from there to what the book has. I am guessing that the problem arises when trying to solve the cross product. I understand that I will need to find the value of the sine of the...
  9. Z

    Calculate the electric field due to a charged disk (how to do the integration?)

    I am interested in particular in the second integral, in the ##\hat{r}## direction. Here is my depiction of the problem: As far as I can tell, due to the symmetry of the problem, this integral should be zero. $$\int_0^R \frac{r^2}{(x^2+r^2)^{3/2}}dr\hat{r}$$ I don't believe I need to...
  10. Z

    Electric field created by two charged circular arcs?

    The strategy will be to figure out what ##dq##, ##\hat{r}_{dq,p}##, and ##r_{dq,p}## are, plug them into the expression for ##d\vec{E}_{p_r}##, then integrate over ##d\vec{E}_{p_r}## to obtain ##\vec{E}_{p_r}##, the electric field at ##P## due to the arc on the right. Then I will repeat the...
  11. C

    I Average field inside spherical shell of charge

    A known result is that the average field inside a sphere due to all the charges inside the sphere itself is proportional to the dipole momentum of the charge distribution (see, for example, here). I wonder whether the same result can be applied in the case of a spherical shell of non-uniform...
  12. guyvsdcsniper

    Help with unit vector for a magnetic field

    So when evaluation the cross product of the velocity of the charge and the unit vectors associated with the point I am getting v x r = j x [ i + j]. Well j x j is 0. j x i = -k, but yet the answer is positive. Why is this?
  13. H

    I How does QM explain that we see electrons circulating in a magnetic field?

    Hi Pfs. I think that QM can explain the classical things explained by classical physics. Using mean values and so on. We know that in a constant magnetic field an electron will rotate on a circle (at the macroscopic scale approximation) I have the answer for the Larmor precession but how to...
  14. H

    I Image for increase in gravitational potential energy in radial field

    A question to physicists: What sort of real world scenario / image would *best* depict the increase in gravitational potential energy in a radial field? Would a rocket traveling through the Earth's atmosphere suffice or are there better alternatives? This image would have to be relevant to the...
  15. F

    I Electric field of uniformly polarized cylinder

    Hi all, I have a doubt when calculating the electric field of a uniformly polarized cylinder P along its longest axis. The cylinder has length L and radius a. Using Gauss's law: $$\int D\cdot ds = \rho_{f} =0 \, \, (eq .1)$$ The electric field inside of cylinder would be: $$E =-...
  16. desperatestudent123

    Calculating magnetic field given dl, current, and radius vector

    I used the above equation, and started with getting the cross product of dl and r, which was equal to 0.00195i+0.00365k. From there, I divided each component by the magnitude of radius cubed (0.827^3). I then multiplied by I and u naught(u_0=4pi*10^-7), and then divided by 4pi. The answer I got...
  17. Hamiltonian

    The Net Electric Field Inside a Dielectric

    The net Electric field(inside the dielectric): $$E_{net} = \frac{1}{4\pi \varepsilon_0 \varepsilon_r} \frac{q}{r^2}$$ $$\vec E_{net} = \vec E_{applied} - \vec p$$ where p is the polarization vector. let charge ##q_{-}## be present on the inner surface of dielectric and ##q_{+}## on the outer...
  18. BadgerBadger92

    Non Mathematical Quantum Field Theory Books?

    Are there any QFT books that use little to no math? If there is a little math that is okay. I don't know much about math. I am looking for good explanations on how it works without math. Any help would be great!
  19. R

    Electrostatics help please -- Electric field, potential

    Hello, any answers appreciated: 'Two spheres are 5 m apart. Sphere 1 has a charge of -20 mC and sphere two has a charge of -50 mC. (a) Find the strength of the electric field at the sphere's halfway point. (b) Find the electric potential at the halfway point
  20. A

    Conductivity and Electric Field relationship

    Okay so this is how it looks like,and there are the given values; a) I've tried it like this. So I now this formula $$ E = \frac{J}{\sigma} $$ where sigma is the conductivity value. Now to get E we need this formula; $$ U = \int_{l}{} E \ ds ] $$ Now to get U we can use the ## U = \frac{P}{I}...
  21. LCSphysicist

    Intensity and electric field amplitude

    Hello. I am having some trouble to understand the resolution of this question. We could easily try to calculate the electric field relative resultant at the screen. The problem i am having is about the amplitude of the electric field: Generally, we have that the intensity part dependent of the...
  22. J

    Linear momentum of the Klein Gordon field

    The correct answer is: #P = \int \frac{dp^3}{(2\pi)^3}\frac{1}{2E_{\vec{p}} \big(a a^{\dagger} + a^{\dagger}a\big)# But I get terms which are proportional to ##aa## and ##a^{\dagger}a^{\dagger}## I hereunder display the procedure I followed: First: ##\phi = \int...
  23. Tertius

    A Higgs field was zero right after Big Bang, could it return to zero?

    Quote from cern: "Just after the big bang, the Higgs field was zero, but as the universe cooled and the temperature fell below a critical value, the field grew spontaneously so that any particle interacting with it acquired a mass." Can it go back to zero? If anyone has a comment either way...
  24. J

    A Quantum Field theory vs. many-body Quantum Mechanics

    A lot of people say that Quantum Field theory (QFT) an Quantum Mechanics (QM) are equivalent. Yet, I've found others who dispute these claims. Among the counter-arguments (which I admittedly do not have the expertise to pick apart and check their validity in full) are the following: 1) While QFT...
  25. J

    A Concept of wavefunction and particle within Quantum Field Theory

    -1st: Could someone give me some insight on what a ket-state refers to when dealing with a field? To my understand it tells us the probability amplitude of having each excitation at any spacetime point, but I don't know if this is accurate. Also, we solve the free field equation not for this...
  26. patric44

    A problem in graphing electric field lines

    hi guys our instructor asked us to try to graph the projection of the electric field intensity at a certain point p(x,y) , for two charges q+-q located at (-a,0) , (a,0), Now starting with the equation $$\frac{dy}{dx} = \frac{E_{y}}{E_{x}}$$ after transforming this equation I got...
  27. A

    I Drude model with and without an electric field

    Why in the Drude model without e-field no energy is transfer by electrons to ions, but when there is an e-field electrons transfer energy to ions ?
  28. Caleydos

    Magnetic field produced by linear current in COMSOL

    Hello, I have used an edge current of 10 A through a 0,45 cm (lenght) wire inside an air sphere. The thing is that, according with Ampere law, the magnetic field (B) produced at a 1 mm of distance from the wire shall be 0,002 T, and I am obtaining much higher values in this simulation (around...
  29. mohammed

    Solving Electric Field Vector Problems Using Gauss's Law

    I'm preparing for exam but it seems I can't find problems similar to this on the internet. Here I will apply Gauss's law on the electric field vector to get the charge density. but the problem is that I can't find similar examples on the internet that uses direct vectors on Maxwell's equations...
  30. tworitdash

    A 2D space and 1D time evolution of a random field

    I want to develop a 2D random field and its change with time with constant velocity. My process: 1. Define a 2D grid [x, y] with n \times n points 2. Define 1D time axis [t] with n_t elements 3. Find the lagrangian distance between the points in space with the velocity in x and y ...
  31. H

    Experiment Exposing Tissue to Pulsed Electromagnetic Field

    Hai guys, My background is from tissue engineering more towards to biology. I am doing exposure of electromagnetic field to a human sample. I have been assigned to use the magnetic device with the information as followed: The PIC16F886 generates 150 microseconds (µs) of pulse frequency of 80...
  32. F

    "Trick" for a specific potential function defined with an integral

    Hello, To first clarify what I want to know : I read the answer proposed from the solution manual and I understand it. What I want to understand is how they came up with the solution, and if there is a way to get better at this. I have to show that, given a vector field ##F## such that ## F ...
  33. Ethan

    Finding Multiple Angles from Sine Values on the Unit Circle

    I got 41 and correspondingly 49 from this. It said its wrong
  34. stephenklein

    Conservation of the Laplace-Runge-Lenz vector in a Central Field

    I actually have worked through the solution just fine by taking the derivative of \vec{L}: \frac{d \vec{L}}{dt} = \dot{\vec{v}} \times \vec{M} - \alpha \left(\frac{\vec{v}}{r} - \frac{\left(\vec{v} \cdot \vec{r}\right)\vec{r}}{r^{3}}\right) I permuted the double cross product: \dot{\vec{v}}...
  35. Ugnius

    Electrostatic potential and electric field of three charges

    So I started with b) and it there was no q2 this would seem reasonable I was wanted to ask , what effect does q2 have on potential of these two charges? Because it has to be given for a reason.
  36. Shreya

    Variation of Electric Field at the centre of Spherical Shell

    My approach is thus: the shell will have induced charges if it's conducting resulting in E at the centre of shell(though flux at centre will be 0). For non conducting spheres there can be no induction only polarization of dipoles, therefore the E field at centre will remain 0. Is my approach...
  37. Sciencemaster

    I Piecewise Functions in the Einstein Field Equations

    Let's say I want to describe a massive box in spacetime as described by the Einstein Field Equations. If one were to construct a metric in cartesian coordinates from the Minkowski metric, would it be reasonable to use a piecewise Stress-Energy Tensor to find our metric? (For example, having...
  38. A

    Magnetostatiscs: dipole moment and magnetic field

    Hello! I tried to solve a) see figure below, is it correct? b) so what I think I can do is to solve ## M_{12} ## from the equation of the magnetic flux then I will get ## \frac{\Phi}{I} = M_{12}## Then I can even use the equation får the magnetic flux and the magnetic field $$ \Phi = \int \vec...
  39. J

    Is the magnetic field B→. a state function and exact differential?

    is the magnetic field B→. a state function and exact differential? I argued that it's a state function, what do you guys think
  40. M

    I Gravitational Field of Electromagnetic Waves: How is it Generated?

    Hi ! It catches my attention that atomic particles such as protons, neutornes, electrons and their respective subparticles such as Quarks are theoretically formed by high-energy electromagnetic fields such as gamma rays and then the gravitational field that would generate the mass of these...
  41. guyvsdcsniper

    Why Does the Potential Energy Calculation for a Dipole Yield a Negative Value?

    So the change in potential energy is ∆U = Uf-Ui. Final minus initial. If i solve the above problem like this I end up with a negative value. The way the person in the attached work solved the problem, is they used ∆U = Ui-Uf. How are the switching Ui and Uf? What is it I am missing?
  42. guyvsdcsniper

    Help finding the Electric field at the center of charged arc

    I am having trouble understand where area circled in red. I get that lamda is Q/L. The charge is +Q. Length is pi/R/2. I am having trouble understanding why the length is pi/R/2? Is it because the circumference of a circle is 2*pi*R and since we have broken this problem down to just...
  43. Ugnius

    Thin Charged Isolated Rod -- Find the electric field at this point

    Hi , I've been trying to manage a solution in my head and i think I'm on the right path , i just need some approval and maybe some tips. So it's obvious I can't solve this without integration because law's only apply to point charges , and i can't shrink this object to a point as i could do with...
  44. Sagittarius A-Star

    COVID Electric field of moderate strength inactivates Covid-19 virus

    A science team from the university of Kassel (Germany) proved with a physical model, that a moderate electric field inactivates the Convid-19 virus. Source: https://www.nature.com/articles/s41467-021-25478-7 via...
  45. karush

    MHB -b.1.1.4 directional field as t \to \infny

    from the spoiler its #4 hope I got instructions right $y'=-1-2y$ $\begin{array}{ll} rewrite &y'+2y=-1\\ exp &u(t)=\exp\ds\int 2 \, dx=e^{2t}\\ product &(e^{2t}y)'=-e^{2t}\\ &e^{2t}y=\ds\int -e^{2t} \, dt=\dfrac{-e^(2 t)}{2}+c\\ hence &y(t)=\dfrac{-e^{2t}}{2} +...
  46. Tertius

    A Difference Between Scalar Field Solutions in Curved Spacetime

    A general free field Lagrangian in curved spacetime (- + + +), is given by: L = -1/2 ∇cΦ ∇cΦ - V(Φ) when the derivative index is lowered, we obtain: L = -1/2 gdc∇dΦ ∇cΦ - V(Φ) then we can choose to replace V(Φ) with something like 1/2 b2 Φ2 so: L = -1/2 gdc∇dΦ ∇cΦ - 1/2 b2 Φ2 ** I will...
  47. V

    Dipole placed in a uniform electric field

    My understanding is that the uniform electric field ##\vec E## cannot be the net electric field since the dipole creates its own electric field as shown in first diagram below, which must superimpose with the uniform electric field. So, yes, the uniform electric field ##\vec E## around the...
  48. bob012345

    I Divergence of the Electric field of a charged circular ring

    In a previous thread* the field in a charged ring was discussed and it was shown to be not zero except at the center. In *post #45 a video is referenced that says the field diverges as one gets close to the ring and it was argued that at very close distances the field looks like an infinite line...
  49. Noki Lee

    I Investigating the 1d Equation: Charges & Field Disparity

    Can we apply the 1d equation (dE/dx = labmda/epsilon0)dEdx=λϵ0 to the first and the second figures? But, in the 2nd case, if we integrate the charge density, some field exists between the two charge densities. Intuitively, it should be like the last figure. What's wrong with this?
Back
Top