arildno said:
Not utterly trivial, Rainbow Child:
Although the "radial" integration will go easy enough, the limits for the unit square, as represented in polar coordinates are somewhat nasty.
You are right, this
Rainbow Child said:
was stupid statement, since I didn't paid much attention to the limits of the integration. Even though the resulting can be evaluted without by hand (but not trivially

!).
The region of integration in polar coordinates becames
\mathcal{D}_1=\left\{(r,\theta):0<\theta<\frac{\pi}{4},0<r<\frac{1}{\cos\theta}\right\},\, \mathcal{D}_2=\left\{(r,\theta):\frac{\pi}{4}<\theta<\frac{\pi}{2},0<r<\frac{1}{\sin\theta}\right\}
thus
I=\int_0^1 \int_0^1 dx dy \frac{1}{(1+x^2+y^2)^{5/2}}=\int\int_{\mathcal{D}_1}d\theta\,dr\frac{r}{(1+r^2)^{5/2}}+\int\int_{\mathcal{D}_2}d\theta\,dr\frac{r}{(1+r^2)^{5/2}}=I_1+I_2
The first integral I_1 reads
I_1=\int_0^{\frac{\pi}{4}}d\theta\int_0^{1/\cos\theta}dr\frac{r}{(1+r^2)^{5/2}}=-\frac{1}{3}\int_0^{\frac{\pi}{4}}d\theta\left(\frac{1}{(1+1/\cos^2\theta)^{3/2}}-1\right)=-\frac{1}{3}\int_0^{\frac{\pi}{4}}d\theta\frac{\cos^3\theta}{(1+\cos^2\theta)^{3/2}}+\frac{\pi}{12}=-\frac{1}{3}\,J_1+\frac{\pi}{12}
The integral J_1 reads
J_1=\int_0^{\frac{\sqrt{2}}{2}}d(\sin\theta)\frac{\cos^2\theta}{(1+\cos^2\theta)^{3/2}}=\int_0^{\frac{\sqrt{2}}{2}}d(\sin\theta)\frac{1-\sin^2\theta}{(2-\sin^2\theta)^{3/2}}}}=\int_0^{\frac{\sqrt{2}}{2}}dt\frac{2-t^2}{(2-t^2)^{3/2}}-\int_0^{\frac{\sqrt{2}}{2}}dt\frac{1}{(2-t^2)^{3/2}}=\arcsin\frac{t}{\sqrt{2}}\Big|_0^{\frac{\sqrt{2}}{2}}-\frac{t}{2\,\sqrt{2-t^2}}\Big|_0^{\frac{\sqrt{2}}{2}}\Rightarrow
J_1=\frac{\pi}{6}-\frac{\sqrt{3}}{6}\Rightarrow I_1=\frac{\sqrt{3}}{18}+\frac{\pi}{36}
Similary for the 2nd integral I_2 we have
I_2=\frac{\sqrt{3}}{18}+\frac{\pi}{36}
yielding to
I=\frac{\pi}{18}+\frac{\sqrt{3}}{9}
as coomast and Troels posted.
Obviously not trivial!
