Deflection of box section - result Discrepancies

AI Thread Summary
The discussion revolves around a beam deflection problem involving a 2100mm mild steel box section beam subjected to individual loads. The poster's calculated deflection of 0.86 mm significantly differs from the tested deflection of 6.77 mm, prompting a request for assistance in identifying the error. Responses indicate that the poster may be misapplying the cantilever moment load formula, as the scenario involves shear loads that also create moments. Suggestions include revisiting shear and moment diagrams and using integration methods to accurately calculate deflection. The poster plans to re-evaluate their calculations using these methods.
Mech King
Messages
69
Reaction score
0
Hello everyone,

I have a beam deflection problem. I haven’t looked at deflections for a while now and I can't understand why my solution is a million miles out fro the results I have seen through testing.

Problem:

I have a beam made from 100x40x3mm mild steel box section which is 2100mm in length. See attached figure for free body diagram of the loading on the beam. Please note the loads P1, P2 and P3 are applied individually and then removed before applying another load, so there is only one load on the beam at anyone time.

The beam is welded to the supports underneath the beam (labeled “support reactions”)

The beam is loaded against its widest face and hence I have used the “second moment of area” value as given from the data sheet in its Y axis.


Relevant formulas:

E=200,000 N/mm2 for steel
I = 361000 mm^4


Solution:

My first load case is the individual force P1 applied to the left hand side of the beam:

P1=22,017N

Cantilever moment load (as per Shigley’s Mech eng Design book):

Ymax = (M*L^2)/2EI
Ymax = [(22017*177.5^2)*177.5^2]/(2*E*I)
Ymax = 0.86 mm

Query of Solution:

I have had this problem tested and the deflection of the beam was 6.77mm. My results are showing a figure which is about 8 times too small?
Could somebody please help me understand where I am going wrong?
I have a similar problem with the remaining two load case scenarios set out in the free body diagram, for loads P2 and P3 also, but I wanted to clear up this scenario here before progressing.
What do you think?
 

Attachments

  • Beam deflection loading case.jpg
    Beam deflection loading case.jpg
    8.1 KB · Views: 547
Engineering news on Phys.org
Well, you don't have a pure moment load. You have an applied shear load, which will then cause a moment.

I assume you're looking at the Appendix, Table A-9.4 Cantilever - moment load. If you notice, it shows the reaction force at the fixed support R_1 = 0. You will surely have a reaction. I don't see any cases in there which match yours. You may have to do this the ol' fashioned way, through integration. Are you familiar with shear/moment diagrams and analytic methods for calculating these things?
 
Hi Minger,

Thanks for the reply.

I am familliar with these methods but haven't looked at them since university so I am a little rusty. I will give it a shot this weekend and show you the results. I am guessing you are familliar with therse methods?

Cheers
 
I also haven't done exactly that in quite some years. From what I remember though, it's as simple as integrating the shear load 4 times and applying the correct boundary conditions as the constants of integration. I may be mistaken though...
 
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Back
Top