Conservation of Angular Momentum Using the Hamiltonian

physics2018
Messages
1
Reaction score
0

Homework Statement


The Hamiltonian for a particle mass m, moving in a central force field is given as: H = 1/(2m) * |p^2| - V(r). Take the Hamiltonian to be invariant, such that it can be shown that L = r x p the angular momentum vector is a conserved quantity: dL/dt = {L,H} = 0.


Homework Equations


q_i-dot = dH/dp_i and p_i-dot = - dH/dq_i


The Attempt at a Solution


I do not understand how to go about solving the following problem ( I think I understand what the Hamiltonian is, but I do not understand how to from it to what needs to be proven) To solve the problem I believe I need to get from Hamiltonian's equations to Lagrange's p_i = dL/dx_i-dot and then from there use p-dot * dr + p * dr-dot = 0 where dr is defined as the distance between two vectors r and r+dr.
 
Physics news on Phys.org
Hi physics2018, welcome to PF!:smile:

physics2018 said:

Homework Statement


The Hamiltonian for a particle mass m, moving in a central force field is given as: H = 1/(2m) * |p^2| - V(r). Take the Hamiltonian to be invariant, such that it can be shown that L = r x p the angular momentum vector is a conserved quantity: dL/dt = {L,H} = 0.


Homework Equations


q_i-dot = dH/dp_i and p_i-dot = - dH/dq_i


The Attempt at a Solution


I do not understand how to go about solving the following problem ( I think I understand what the Hamiltonian is, but I do not understand how to from it to what needs to be proven) To solve the problem I believe I need to get from Hamiltonian's equations to Lagrange's p_i = dL/dx_i-dot and then from there use p-dot * dr + p * dr-dot = 0 where dr is defined as the distance between two vectors r and r+dr.

Well, since you are asked to show that \frac{d\textbf{L}}{dt}=\{\textbf{L},H\}=0, why not start by computing \{\textbf{L},H\}?
 
Last edited:
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Back
Top