Shock load due to high pressure gas flowing into container

AI Thread Summary
The discussion centers on the potential risks of shock loading when high-pressure gas is released into a smaller, atmospheric-pressure container. It emphasizes that shock waves generated by gas flow at sonic speeds are typically not significant enough to impact stress analysis in the container. Instead, the focus should be on calculating the worst-case pressure rise within the container to assess stress levels as if they were static. The initial shock from the gas entering the container is not expected to cause structural failure. Proper calculations should prioritize the pressure differential and resulting stresses rather than transient shock effects.
Sultan of Hel
Messages
11
Reaction score
0
Hello, I am new here so I apologize in advance if my question is not formatted as it should.

I have an application where a large pressurized vessel is releasing part of its contents (gaseous) into an "empty" container (air), much smaller, that is at atmospheric pressure. I need to know if the initial shock of the gas (nothing reactive) from the vessel flowing into the container would rip the container apart or rip it from the vessel, so I need to calculate the force (or an equation for the force) due to the high pressure air rushing in.

The vessel contains a gas (nothing reactive) at 150 psi absolute pressure (135 psig).
The container into which it releases said gas is at 15 psi absolute pressure (0 psig).
The orifice size is a circle of radius 2.
The shape of the container is as follows:
Cone going from 2" radius to 3-3/8" radius (4" dia to 7.5" dia)​
Cylinder at 3-3/8" radius (7.5" dia pipe)​
Cone going from 3-3/8" radius to 2" radius​
The total height, orifice to bottom of container, is roughly 11"
The volume of the container is roughly 0.17 cu. ft.
Assume acceleration due to gravity is negligible.
Assume the pressure drop in the large vessel is negligible (V_vessel >> V_container)

Where do I start? Volumetric flow, pressure differential equation (meteorological), etc.

Let me know if you need the surface area of the bottom and bottom taper of the vessel, or its "normal surface area" in the direction of the flow.

Thanks!
 
Engineering news on Phys.org
Shock waves can be created by the flow of a gas at sonic velocity through a restriction in a pipe. But those shock waves are never so large that they need to be taken into account in any stress analysis of the parts. So when you have a vessel dumping a gas into a container and resulting in a sudden pressure rise of the container, there is no need to consider any additional stresses caused by the gas other than the resulting internal pressure. Just determine the worst case pressure rise in the container and calculate stresses as if they are static.
 
Q_Goest said:
those shock waves are never so large that they need to be taken into account in any stress analysis of the parts.
Thanks! And sorry for the delay :)
 
Hi all, i have some questions about the tesla turbine: is a tesla turbine more efficient than a steam engine or a stirling engine ? about the discs of the tesla turbine warping because of the high speed rotations; does running the engine on a lower speed solve that or will the discs warp anyway after time ? what is the difference in efficiency between the tesla turbine running at high speed and running it at a lower speed ( as fast as possible but low enough to not warp de discs) and: i...
Thread 'Where is my curb stop?'
My water meter is submerged under water for about 95% of the year. Today I took a photograph of the inside of my water meter box because today is one of the rare days that my water meter is not submerged in water. Here is the photograph that I took of my water meter with the cover on: Here is a photograph I took of my water meter with the cover off: I edited the photograph to draw a red circle around a knob on my water meter. Is that knob that I drew a red circle around my meter...
Back
Top