Rain from the perspective of a moving train and a gun on the moon

AI Thread Summary
The discussion revolves around two exam questions related to physics concepts. The first question involves calculating the speed of a train based on the observed angle of rain falling at a specific velocity and angle. The solution approach includes using trigonometric functions to resolve the rain's velocity components and deducing the train's speed. The second question asks whether bullets fired on Earth and the Moon have the same final velocity, hinting at differences in gravitational effects. The participant expresses confidence in their calculations for the train's speed, arriving at a total of approximately 40.98 m/s.
Matt H
Messages
7
Reaction score
0
question(s):

These are questions from an exam i took earlier tonight, but do not know if i got them correct.

1) Rain is falling with velocity 30 m/s at an angle of 60° from the vertical and is blowing due east. If a passenger inside of a train (also traveling due east) observes the rain falling at an angle of 30° from the vertical how fast is the train moving?

2) Conceptual: Does a bullet fired on Earth and a bullet fired on the moon have the same final velocity?


equations:

Trig rules and vector knowledge...



attempt at solution:

What I'm doing as of now is drawing a right triangle with the hypoteneuse equaling 30 m/s, the angle from the vertical equaling 30° and the angle from the horizontal equaling 60° (a standard 30:60:90 triangle). Then, I'm just using standard trig rules to solve for the "opposite" side which in this case i believe would represent the velocity of the train. If that is a correct solution then the answer should be easily gotten by solving this:

sin30°= x / 30 m/s

30(sin30°) = x

15 = x

A choice on the exam was 14.9 so that is what i chose. I just don't know if that is a valid way to do the problem or not...
 
Last edited:
Physics news on Phys.org
I think i figured it out. I solved the x component vector for the rain that is falling outside of the train which is 30(sin60) = x. This value is 25.98. Then, i just re-solved the vector of the train using the same formula, but substituting in the new angle which is 30(sin30) = x. This value is 15. Assuming the train is moving faster than the wind that is blowing the rain the total velocity of the train should be the sum of the two x component vectors. Simply put, i believe the answer is 25.98 m/s + 15 m/s which is 40.98 m/s. Does anyone agree with that?
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top