Double Polar Integral Conversion and Integration on a Disk with Radius 3

  • Thread starter Thread starter tnutty
  • Start date Start date
  • Tags Tags
    Integral Polar
tnutty
Messages
324
Reaction score
1

Homework Statement



Convert to polar integral and integrate.

\int_{D}\int xy dA

where D is the disk with the center origin and radius 3.

I am not sure about the limits. I know that x = rcos(\theta), y = rsin(\theta), dA = rdr*d\theta
 
Physics news on Phys.org
Solved, thanks
 
no worries
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top