Implicit Runge–Kutta in R^3 space

  • Thread starter Thread starter Beduino
  • Start date Start date
  • Tags Tags
    Implicit Space
Beduino
Messages
6
Reaction score
2
I'm trying to solve a implicit runge kutta algorithm numerically in ℝ3 space as a integrator for orbital simulation.

http://en.wikipedia.org/wiki/Runge–Kutta_methods#Implicit_Runge.E2.80.93Kutta_methods

More specifically a 6th order Gauss–Legendre method
http://en.wikipedia.org/wiki/Gauss–Legendre_method

I have worked out the three K parameters needed in the method, which forms a system of non linear vector equations below.

\left\{\begin{matrix}<br /> \overrightarrow{K_{1}}=-\delta t*\mu\frac{\overrightarrow{r}+<br /> a_{11}\overrightarrow{K_{1}}+<br /> a_{12}\overrightarrow{K_{2}}+<br /> a_{13}\overrightarrow{K_{3}}}{\left | \overrightarrow{r}+<br /> a_{11}\overrightarrow{K_{1}}+<br /> a_{12}\overrightarrow{K_{2}}+<br /> a_{13}\overrightarrow{K_{3}} \right |^{3}}\\ <br /> \overrightarrow{K_{2}}=-\delta t*\mu\frac{\overrightarrow{r}+<br /> a_{21}\overrightarrow{K_{1}}+<br /> a_{22}\overrightarrow{K_{2}}+<br /> a_{23}\overrightarrow{K_{3}}}{\left | \overrightarrow{r}+<br /> a_{21}\overrightarrow{K_{1}}+<br /> a_{22}\overrightarrow{K_{2}}+<br /> a_{23}\overrightarrow{K_{3}} \right |^{3}}\\ <br /> \overrightarrow{K_{3}}=-\delta t*\mu\frac{\overrightarrow{r}+<br /> a_{31}\overrightarrow{K_{1}}+<br /> a_{32}\overrightarrow{K_{2}}+<br /> a_{33}\overrightarrow{K_{3}}}{\left | \overrightarrow{r}+<br /> a_{31}\overrightarrow{K_{1}}+<br /> a_{32}\overrightarrow{K_{2}}+<br /> a_{33}\overrightarrow{K_{3}} \right |^{3}}<br /> \end{matrix}\right.

What's the most appropriated way to solve this system numerically, all parameters are given, except each K vector.
 
Physics news on Phys.org
There is no other way than to solve it the hard way.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...

Similar threads

Back
Top