Cartesian Definition and 549 Threads
-
Kinematics problem involving multiple frames
So what i did was set up the cartesian axes ##e_1-e_2-e_3## and also the cylindrical ##e_r-e_\phi## The issue is how to calculate the cross products in the coriolis term without involving ##\phi##- Bling Fizikst
- Thread
- Cartesian Frames Kinematics
- Replies: 6
- Forum: Introductory Physics Homework Help
-
N
B Cartesian Space vs. Euclidean Space
For a while I've been trying to get a better understanding of how Descartes' invention of Cartesian space revolutionized math. It seems like an invention on par with the invention of agriculture in how it led to human progress. I am still having trouble, though, pinpointing examples of what can...- NoahsArk
- Thread
- Analytical Cartesian Euclidean
- Replies: 10
- Forum: General Math
-
The div in cartesian coordinates
I am currently studying a section from \textit{Electricity and Magnetism} by Purcell, pages 81 and 82, and need some clarification on the following concept. Here’s what I understand so far: 1. The integral of a function $ \mathbf{F} $ over a surface \( S \) is equal to the sum of the integrals...- kirito
- Thread
- Cartesian Divergence Flux
- Replies: 2
- Forum: Introductory Physics Homework Help
-
M
Is My Solution to the Driven Spring Problem Correct?
For this problem, For part(a), I am not sure if I am solving it correctly. I define the usual cartesian x-y coordinate system at the base of the wall. This gives ##x = l_0 + q(t) + x_w(t) = l_0 + q(t) + d\sin(\gamma t)## which implies that ##\dot x = \dot q + d \gamma \cos (\gamma t)##...- member 731016
- Thread
- Cartesian Coordinate Spring
- Replies: 1
- Forum: Advanced Physics Homework Help
-
E
I Schwarzschild in Cartesian: Tricks for Transformation
According to Schutz, the line element for large r in Schwarzschild is $$ ds^2 \approx - ( 1 - \frac {2M} {r}) dt^2 + (1 + \frac {2M} {r}) dr^2 + r^2 d\Omega^2 $$ and one can find coordinates (x, y, z) such that this becomes $$ ds^2 \approx - ( 1 - \frac {2M} {R}) dt^2 + (1 + \frac {2M} {R})...- epovo
- Thread
- Cartesian Schwarzschild
- Replies: 18
- Forum: Special and General Relativity
-
Geometry Looking for books (or papers) on the Cartesian coordinate system
I am looking for more books like this one: https://archive.org/details/MethodOfCoordinateslittleMathematicsLibrary Method of Coordinaes (Little Mathematics Library) by A. S. Smogorzhevsky I am also interested in papers if you can suggest any. I am interested in texts, that explore the idea of...- Trysse
- Thread
- Books Cartesian Coordinate Coordinate system Papers System
- Replies: 2
- Forum: Science and Math Textbooks
-
I Helmholtz Equation in Cartesian Coordinates
So given the Helmholtz equation $$\nabla^2 u(x,y,z) + k^2u(x,y,z)=0$$ we do the separation of variables $$u=u_x(x)u_y(y)u_z(z)= u_xu_yu_z$$ and ##k^2 = k_x^2 + k_y^2 +k_z^2## giving three separate equations; $$\nabla^2_x u_x+ k_x^2 u_x=0$$ $$\nabla^2_y u_y+ k_y^2 u_y=0$$ $$\nabla^2_z u_z+ k_z^2...- bob012345
- Thread
- Cartesian Cartesian coordinates Coordinates Helmholtz Helmholtz equation
- Replies: 11
- Forum: Differential Equations
-
Find the Cartesian equation given the parametric equations
hmmmmm nice one...boggled me a bit; was trying to figure out which trig identity and then alas it clicked :wink: My take; ##x=(\cos t)^3 ## and ##y=(\sin t)^3## ##\sqrt[3] x=\cos t## and ##\sqrt[3] y=\sin t## we know that ##\cos^2 t + \sin^2t=1## therefore we shall have...- chwala
- Thread
- Cartesian Parametric Parametric equations
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
Find the Cartesian equation of the curve
Find ms solution; My approach; ##xt=t^2+2## and ##yt=t^2-2## ##xt-2=t^2## and ##yt+2=t^2## ##⇒xt-2=yt+2## ##xt-yt=4## ##t(x-y)=4## ##t=\dfrac{4}{x-y}## We know that; ##x+y=2t## ##x+y=2⋅\dfrac{4}{x-y}##...- chwala
- Thread
- Cartesian Curve
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
Comparing Hyperbolic and Cartesian Trig Properties
I came across this question; i noted that the hyperbolic trigonometry properties are somewhat similar to what i may call cartesian trigonometry properties... My approach on this; ##\tanh x = \sinh y## ...just follows from ##y=\sin^{-1}(\tan x)## ##\tan x = \sin y## Therefore...- chwala
- Thread
- Cartesian Hyperbolic Hyperbolic functions Properties Trig
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
Cartesian and polar coordinate in Simple pendulum, Euler-Lagrange
$$L = \frac {mv^2}{2} - mgy$$ It is clear that ##\dot{x}=\dot{\theta}L## and ##y=-Lcos \theta##. After substituting these two equations to Lagrange equation, we will get the answer by simply using this equation: $$\frac {d} {dt} \frac {∂L}{∂\dot{\theta}} - \frac {∂L}{∂\theta }= 0$$ But, What if...- Father_Ing
- Thread
- Cartesian Coordinate Euler-lagrange Homework and exercise Lagrange Pendulum Polar Simple pendulum
- Replies: 4
- Forum: Introductory Physics Homework Help
-
I Convert cylindrical coordinates to Cartesian
Good day! I am currently struggling with a very trivial question. During my studies, I operated with a parameter called "geometrical buckling" for neutrons and determined it in cylindrical coordinates. But thing is that we usually do not consider buckling's dependence on angle so its angular...- nuclearsneke
- Thread
- Cartesian Convert Coordinates Cylindrical Cylindrical coordinates
- Replies: 6
- Forum: Linear and Abstract Algebra
-
A
Difference between a closed solid and a Cartesian surface
Greetings All! I have hard time to make the difference between the equation of a closed solid and a cartesian surface. For example in the exercice n of the exam I thought that the equation was describing a closed solid " a paraboloid locked by an inclined plane (so I thought I could use...- Amaelle
- Thread
- Cartesian Closed Difference Solid Surface
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
K
I A little clarification on Cartesian tensor notation
Goldstein pg 192, 2 edIn a Cartesian three-dimensional space, a tensor ##\mathrm{T}## of the ##N## th rank may be defined for our purposes as a quantity having ##3^{N}## components ##T_{i j k}##.. (with ##N## indices) that transform under an orthogonal transformation of coordinates... -
M
I Transform from polar to cartesian
Probability distribution - uniform on unit circle. In polar coordinates ##dg(r,a)=\frac{1}{2\pi}\delta(r-1)rdrda##. This transforms in ##df(x,y)=\frac{1}{2\pi}\delta(\sqrt{x^2+y^2}-1)dxdy##. The problem I ran into was the second integral was 1/2 instead of 1. -
M
B Exploring Holonomic Basis in Cartesian Coordinates
Are cartesian coordinates the only coordinates with a holonomic basis that's orthonormal everywhere?- mairzydoats
- Thread
- Basis Cartesian Cartesian coordinates Coordinates
- Replies: 2
- Forum: Differential Geometry
-
Find the Cartesian equation of a curve given the parametric equation
My interest on this question is solely on ##10.iii## only... i shared the whole question so as to give some background information. the solution to ##10.iii## here, now my question is, what if one would approach the question like this, ##\frac {dy}{dx}=\frac{t^2+2}{t^2-2}## we know that...- chwala
- Thread
- Cartesian Curve Parametric
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
R
Transformation of Reynolds Equation from Cartesian to cylindrical
∂/∂x ((ρh^3)/12μ ∂p/∂x) + ∂/∂z ((ρh^3)/12μ ∂p/∂z) = ∂/∂x (ρh (U_1+U_2)/2) + ∂/∂z (ρh (W_1+W_2)/2) + (∂(ρh))/∂t (1) 1/r ∂/∂r (r (ρh^3)/12μ ∂p/∂r) + 1/r ∂/∂θ ((ρh^3)/12μ ∂p/r∂θ) = rω/2 ∂(ρh)/r∂θ + (∂(ρh))/∂t (2)- rakan
- Thread
- Cartesian Cylindrical Reynolds Transformation
- Replies: 1
- Forum: Mechanical Engineering
-
L
A Tensor product in Cartesian coordinates
I am confused. Why sometimes perturbation ##V'=\alpha xy## we can write as ##V'=\alpha x \otimes y##. I am confused because ##\otimes## is a tensor product and ##x## and ##y## are not matrices in coordinate representation. Can someone explain this?- LagrangeEuler
- Thread
- Cartesian Cartesian coordinates Coordinates Product Tensor Tensor product
- Replies: 4
- Forum: Quantum Physics
-
Engineering Using Cartesian vs. Normal/Tangential Coordinates for Centripetal Motion
So for this problem the solution used Cartesian coordinates but I was wondering wouldn’t it be easier to use Normal and tangential coordinate because the bar is undergoing centripetal motion? Also on the right diagram shouldn’t the acceleration be down and not up. The reason I think that is...- Pipsqueakalchemist
- Thread
- Cartesian Centripetal Coordinates Motion
- Replies: 10
- Forum: Engineering and Comp Sci Homework Help
-
Cartesian sum of subspace and quotient space isomorphic to whole space
Let ##n=\dim X## and ##m=\dim Y##. Define a basis for ##X: y_1,...,y_m,z_{m+1},...,z_n##. The first ##m## terms are a basis for ##Y##. The remaining ##n-m## terms are a basis for its complement w.r.t ##X##. Let's call it ##Z##. ##X## is the direct sum of ##Y## and ##Z##; denote it as ##X=Y+Z##...- Eclair_de_XII
- Thread
- Cartesian quotient Space Subspace Sum
- Replies: 26
- Forum: Calculus and Beyond Homework Help
-
I Cartesian to Polar form.... Is it just a transformation of the plane?
Hello, Today I started to think about why graphs, of the same equation, look different on the Cartesian plane vs. the polar grid. I have this visualization where every point on the cartesian plane gets mapped to a point on the polar grid through a transformation of the grids themselves...- srfriggen
- Thread
- Cartesian Form Plane Polar Polar form Transformation
- Replies: 8
- Forum: General Math
-
I Transforming Cartesian Coordinates in terms of Spherical Harmonics
As the subject title states, I am wondering how would one go about transforming Cartesian coordinates in terms of spherical harmonics. To my understanding, cartesian coordinates can be transformed into spherical coordinates as shown below. $$x=\rho \sin \phi \cos \theta$$ $$y= \rho \sin \phi...- Athenian
- Thread
- Cartesian Cartesian coordinates Coordinates Harmonics Spherical Spherical harmonics Terms Transformation
- Replies: 1
- Forum: Differential Equations
-
A How do I express an equation in Polar coordinates as a Cartesian one.
I got a polar function. $$ \psi = P(\theta )R(r) $$ When I calculate the Laplacian: $$ \ \vec \nabla^2 \psi = P(\theta)R^{\prime\prime}(r) + \frac{P(\theta)R^{\prime}(r)}{r} + \frac{R(r)P^{\prime\prime}(\theta)}{r^{2}} $$ Now I need to convert this one into cartesian coordinates and then...- JorgeM
- Thread
- Calculus Cartesian Coordinates Laplacian Polar Polar coordinates
- Replies: 1
- Forum: General Math
-
T
I Dot product in Euclidean Space
Hello As you know, the geometric definition of the dot product of two vectors is the product of their norms, and the cosine of the angle between them. (The algebraic one makes it the sum of the product of the components in Cartesian coordinates.) I have often read that this holds for Euclidean...- Trying2Learn
- Thread
- Cartesian Dot Dot product Euclidean Euclidean space Geometric Product Space
- Replies: 16
- Forum: Linear and Abstract Algebra
-
E
I Velocity Vector Transformation from Cartesian to Spherical Coordinates
Hi all, I can't find a single thing online that translates a cartesian velocity vector directly to spherical vector coordinate system. If I am given a cartesian point in space with a cartesian vector velocity and I want to convert it straight to spherical coordinates without the extra steps of... -
B Time in Cartesian Coordinate Systems: Math Q&A
I am teaching myself math and have a question about cartesian coordinate systems. How is time illustrated in such a graph? [Moderator's note: Moved from a math forum after post #13.]- BadgerBadger92
- Thread
- Cartesian Coordinate Coordinate system System Time
- Replies: 15
- Forum: Special and General Relativity
-
M
MHB Sets so that the cartesian product is commutative
Hey! :o Let $A,B$ be sets, such that $A\times B=B\times A$. I want to show that one of the following statements hold: $A=B$ $\emptyset \in \{A,B\}$ I have done the following: Let $A$ and $B$ be non-empty set. Let $a\in A$. For each $x\in B$ we have that $(a,x)\in A\times B$. Since...- mathmari
- Thread
- Cartesian Product Sets
- Replies: 2
- Forum: Set Theory, Logic, Probability, Statistics
-
S
Sakurai 3.21, Cartesian eigenbasis representation
- Silicon-Based
- Thread
- Cartesian Representation Sakurai
- Replies: 6
- Forum: Advanced Physics Homework Help
-
Z
I Area Differential in Cartesian and Polar Coordinates
The area differential ##dA## in Cartesian coordinates is ##dxdy##. The area differential ##dA## in polar coordinates is ##r dr d\theta##. How do we get from one to the other and prove that ##dxdy## is indeed equal to ##r dr d\theta##? ##dxdy=r dr d\theta## The trigonometric functions are used...- Zap
- Thread
- Area Cartesian Coordinates Differential Polar Polar coordinates
- Replies: 13
- Forum: General Math
-
I Radial Vector in Cartesian form
If I wanted to write ##\hat{r}##in terms of ##\hat{x}##and ##\hat{y}##, is it ##\frac{\hat{x} + \hat{y}}{\sqrt{2}}## ?- Arman777
- Thread
- Cartesian Form Radial Vector
- Replies: 8
- Forum: General Math
-
Converting Velocity Formula: Polar to Cartesian
I have a little question about converting Velocity formula that is derived as, ##\vec{V}=\frac{d\vec{r}}{dt}=\frac{dx}{dt}\hat{x}+\frac{dy}{dt}\hat{y}+\frac{dz}{dt}\hat{z}## in Cartesian Coordinate Systems ##(x, y, z)##. I want to convert this into Polar Coordinate System ##(r, \theta)##... -
K
I Locally Cartesian Coordinates on the Sphere
I was trying to construct locally Euclidean metrics. Consider the sphere with the usual coordinate system induced from spherical coordinates in ##\mathbb R^3##. Consider a point ##p## in the Equator having coordinates ##(\theta_0, \phi_0) = (\pi/2, 0)##. If you make the coordinate change ##\xi^1...- kent davidge
- Thread
- Cartesian Cartesian coordinates Coordinates Sphere
- Replies: 10
- Forum: Special and General Relativity
-
Y
MHB Does AxA Equal BxB Imply A Equals B?
Dear all, I am trying to prove a simple thing, that if AxA = BxB then A=B. The intuition is clear to me. If a pair (x,y) belongs to AxA it means that x is in A and y is in A. If a pair (x,y) belongs to BxB it means that x is in B and y is in B. If the sets of all pairs are equal, it means...- Yankel
- Thread
- Cartesian Product Proof
- Replies: 5
- Forum: Set Theory, Logic, Probability, Statistics
-
A
Converting a Cartesian Integral to a Polar Integral
the graph of x= √4-y^2 is a semicircle or radius 2 encompassing the right half of the xy plane (containing points (0,2); (2,0); (0-2)) the graph of x=y is a straight line of slope 1 The intersection of these two graphs is (√2,√2) y ranges from √2 to 2. Therefore, the area over which we...- Amadeo
- Thread
- Cartesian Integral Polar
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
M
Convert cylindrical coordinate displacement to Cartesian
Summary: I can't figure out how the solver carries out the conversions from cartesian to cylindrical coordinates and vice-versa. I have a set of points of a finite element mesh which when inputted into a solver (ansys) gives the displacement of each node. I can get the displacement values of...- Madz99
- Thread
- Cartesian Cartesian coordinates Convert Coordinate Cylindrical Cylindrical coordinates Displacement Polar coordinates Unit conversion
- Replies: 1
- Forum: Precalculus Mathematics Homework Help
-
Hollow Sphere Inertia in Cartesian Coordinates
Problem Statement: How do you calculate the rotational inertia of a hollow sphere in cartesian (x,y) coordinates? Relevant Equations: I=Mr^2 My physics teacher said its his goal to figure this out before he dies. He has personally solved all objects inertias in cartesian coordinates but can't...- colemc20
- Thread
- Cartesian Cartesian coordinates Coordinate Coordinates Inertia Sphere
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
Z
I Derivation of Divergence in Cartesian Coordinates
In section 1-5 of the third edition of Foundations of Electromagnetic Theory by Reitz, Milford and Christy, the authors give a coordinate-system-independent definition of the divergence of a vector field: $$\nabla\cdot\mathbf{F} = \lim_{V\rightarrow 0}\frac{1}{V}\int_S\mathbf{F\cdot n}da$$... -
K
I Definition of Cartesian Coordinate System
I was asking myself what is the definition of a Cartesian Coordinate System. Can we say that it's a coordinate system such that - the basis vectors are the same ##\forall x \in R^n## - the basis vectors are orthonormal at each ##x \in R^n## So for instance, normalized polar coordinates do not...- kent davidge
- Thread
- Cartesian Coordinate Coordinate system Definition System
- Replies: 3
- Forum: General Math
-
I Integration over a part of a spherical shell in Cartesian coordinates
I am modeling some dynamical system and I came across integral that I don't know how to solve. I need to integrate vector function f=-xj+yi (i and j are unit vectors of Cartesian coordinate system). I need to integrate this function over a part of spherical shell of radius R. This part is... -
A
A Representing harmonic oscillator potential operator in. Cartesian basis
My question is given an orthonormal basis having the basis elements Ψ's ,matrix representation of an operator A will be [ΨiIAIΨj] where i denotes the corresponding row and j the corresponding coloumn. Similarly if given two dimensional harmonic oscillator potential operator .5kx2+.5ky2 where x...- Apashanka
- Thread
- Basis Cartesian Harmonic Harmonic oscillator Operator Oscillator Potential
- Replies: 7
- Forum: Quantum Physics
-
Why Can't All Subsets of A×B Be Expressed as Cartesian Products?
Homework Statement Prove: If A and B each have at least two elements, then not every element of P(A×B) has the form A1 ×B1 for some A1 ∈ P(A)and B1 ∈ P(B). Homework EquationsThe Attempt at a Solution Suppose A = {1, 2}, B = {3, 4}. AXB = {(1,3), (1,4), (2,3), (2,4)} P(A) = {{1}, {2}, {1,2}...- Carrie233
- Thread
- Cartesian Product Sets
- Replies: 7
- Forum: Precalculus Mathematics Homework Help
-
T
Converting Cartesian to Polar (Double Integral)
Homework Statement Integrate from 0 to 1 (outside) and y to sqrt(2-y^2) for the function 8(x+y) dx dy. I am having difficulty finding the bounds for theta and r. Homework Equations I understand that somewhere here, I should be changing to x = r cost y = r sin t I understand that I can solve...- Trebond
- Thread
- Calculus 3 Cartesian Double integral Integral Polar
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
S
Cartesian to Cylindrical coordinates?
Homework Statement I want to convert R = xi + yj + zk into cylindrical coordinates and get the acceleration in cylindrical coordinates. Homework Equations z The Attempt at a Solution I input the equations listed into R giving me: R = i + j + z k Apply chain rule twice: The...- shreddinglicks
- Thread
- Cartesian Coordinates Cylindrical Cylindrical coordinates
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
I How Are Infinite Cartesian Products Interpreted in Set Theory?
I was studying Group Theory on my own from a mathematics journal and got confused at some point where it defines Cartesian products, from binary one, say (A × B), to n-tuples one, say (A_1 × A_2 × ... × A_n). What confuses me when I tried to read it is that the definition made for infinite...- Calculuser
- Thread
- Cartesian Definitions Product
- Replies: 4
- Forum: Set Theory, Logic, Probability, Statistics
-
M
Solve Cartesian Product Without Symbol: Find Answers Here
<Moderator's note: Moved from a technical forum and thus no template.> Here is a problem and solution given in my book. this is using a symbol in cartesian product . I checked other books for cartesian product examples but there was no such symbol being used. Here is my solution without...- momentum
- Thread
- Cartesian Product
- Replies: 10
- Forum: Precalculus Mathematics Homework Help
-
F
Convert the polar equation to the Cartesian equation
Homework Statement Replace the polar equation with an equivalent Cartesian equation. ##r^2 = 26r cos θ - 6r sin θ - 9## a)##(x - 13)^2 + (y + 3)^2 = 9## b)##(x + 26)^2 + (y - 6)^2 = 9## c)##26x - 6y = 9## d)##(x - 13)^2 + (y + 3)^2 = 169## Homework Equations ##x= r cos \theta## ##y= r sin...- Fatima Hasan
- Thread
- Cartesian Convert Polar
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
F
Convert the Cartesian equation to the polar equation
Homework Statement Replace the Cartesian equation with an equivalent polar equation. ##x^2 + (y - 18)^2 = 324## a)##r = 36 sin θ## b)##r^2 = 36 cos θ## c)##r = 18 sin θ## d)##r = 36 cos θ## Homework Equations ##x= r cos \theta ## ##y= r sin \theta ## ##x^2 + y^2 = r^2 ## The Attempt at a...- Fatima Hasan
- Thread
- Cartesian Convert Polar
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
F
Graph the Cartesian equation: x=4t^2, y=2t
Homework Statement Parametric equations and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction...- Fatima Hasan
- Thread
- Cartesian Graph
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
F
Graph the Cartesian equation: x = 2 sin t, y = 4 cos t
Homework Statement Parametric equations and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction...- Fatima Hasan
- Thread
- Cartesian Cos Graph Sin
- Replies: 1
- Forum: Calculus and Beyond Homework Help