Complex numbers Definition and 724 Threads
-
Find the greatest value of argument- complex numbers
since ##|z|≤3## →##z=0+0i##, therefore we shall have centre##(0,0)## and radius ##3##, find my sketch below,- chwala
- Thread
- Argument Complex Complex numbers Numbers Value
- Replies: 12
- Forum: Calculus and Beyond Homework Help
-
C
I Simplest self-contained numeral system for complex numbers?
Anyone know what the simplest possible self-contained numeral system for complex numbers would be, analogous to signed ternary for integers? My guess would be quarter-imaginary base (https://en.wikipedia.org/wiki/Quater-imaginary_base.)- cuallito
- Thread
- Complex Complex numbers Numbers System
- Replies: 8
- Forum: General Math
-
K
I Show that ##\mathbb{C}## can be obtained as 2 × 2 matrices
I have this problem in my book: Show that ##\mathbb{C}## can be obtained as 2 × 2 matrices with coefficients in ##\mathbb{R}## using an arbitrary 2 × 2 matrix ##J## with a characteristic polynomial that does not contain real zeros. In the picture below is the given solution for this: I...- Karl Karlsson
- Thread
- Complex numbers Linear algebra Matrices
- Replies: 14
- Forum: Linear and Abstract Algebra
-
A
Exponential Wavefunction for Infinite Potential Well Problem
Using the boundary conditions where psi is 0, I found that k = n*pi/a, since sin(x) is zero when k*a = 0. I set up my normalization integral as follows: A^2 * integral from 0 to a of (((exp(ikx) - exp(-ikx))*(exp(-ikx) - exp(ikx)) dx) = 1 After simplifying, and accounting for the fact that...- a1234
- Thread
- Complex numbers Exponential Infinite Infinite potential well Potential Potential well Schrodinger equation Wavefunction
- Replies: 7
- Forum: Advanced Physics Homework Help
-
D
Complex numbers: Solve ##Z^2\bar{Z}=8i##
Solve ##Z^2\bar{Z}=8i## i am confused on how to proceed i have tried to substitute ##z=a+ib## solve the conjugate and the square, then separate the real from the imaginary and put all in a system, but becomes too complicated- DottZakapa
- Thread
- Complex Complex numbers Numbers
- Replies: 29
- Forum: Precalculus Mathematics Homework Help
-
A
Complex numbers: convert the exponential to polar form
Summary:: Hello, my question asks if the complex exponential equation 4e^(-j) is equal to 4 ∠-180°. I tried to use polar/rectangular conversions: a+bj=c∠θ with c=(√a^2 +b^2) and θ=tan^(-1)[b/a] 4e^(-j)=4 ∠-180° c=4, 4=(√a^2 +b^2) solving for a : a=(√16-b^2) θ=tan^(-1)[b/a]= -1 b/(√16-b^2)=...- ac7597
- Thread
- Complex Complex number Complex numbers Convert Exponential Form Numbers Polar Polar form
- Replies: 9
- Forum: Precalculus Mathematics Homework Help
-
D
Finding Domain for Complex Numbers: |y-x|<=2, |x|<=2
i have to find such domain z=x+iy , y,x∈ℝ , |y-x|<=2, |x|<=2 i'm confused with |y-x|<=2, how should i proceed ? with abs of x i am ok.- DottZakapa
- Thread
- Complex Complex numbers Domain Numbers
- Replies: 13
- Forum: Calculus and Beyond Homework Help
-
MHB Finding Real Part of $z$ for Complex Numbers
Let $z_1=18+83i,\,z_2=18+39i$ and $z_3=78+99i$, where $i=\sqrt{-1}$. Let $z$ be the unique complex number with the properties that $\dfrac{z_3-z_1}{z_2-z_1}\cdot \dfrac{z-z_2}{z-z_3}$ is a real number and the imaginary part of $z$ is the greatest possible. Find the real part of $z$.- anemone
- Thread
- Complex Complex numbers Numbers
- Replies: 1
- Forum: General Math
-
M
Find the set of points that satisfy:|z|^2 + |z - 2*i|^2 =< 10
Hello everyone, I've been struggling quite a bit with this problem, since I'm not sure how to approach it correctly. The inequality form reminds me of the equation of a circle (x^2 + y^2 = r^2), but I have no idea how to be sure about it. Would it help just to simplify the inequality in terms...- Makadamij
- Thread
- Absolute value Complex numbers Inequality Points Set
- Replies: 4
- Forum: Precalculus Mathematics Homework Help
-
I The domain of the Fourier transform
Given the domain of the integral for the Fourier transform is over the real numbers, how does the Fourier transform transform functions whose independent variable is complex? For example, given \begin{equation} \begin{split} \hat{f}(k_{\mathbb{C}}) &= \int_{\mathbb{R}} f(z_{\mathbb{C}})... -
Graph complex numbers to verify z^2 = (conjugate Z)^2
Hello! :smile: I am locked in an exercise. I must find (and graph) the complex numbers that verify the equation: ##z^2=\bar z^2 ## If ##z=x+iy## then: ##(x+iy)^2=(x-iy)^2 ## and operating and simplifying, ##4.x.yi=0 ## and here I don't know how to continue... can you help me with ideas? thanks!- il postino
- Thread
- Complex Complex number Complex numbers Graph Numbers
- Replies: 9
- Forum: Precalculus Mathematics Homework Help
-
L
B Is it possible to find complex numbers Cn, so that both equations are satisfied?
Is it possible two find complex numbers ##C_n##, so that both equations are satisfied \sum^{\infty}_{n=1}nC_n=0 and \sum^{\infty}_{n=1}|C_n|^2=1 ?- LagrangeEuler
- Thread
- Complex Complex numbers Numbers
- Replies: 7
- Forum: Calculus
-
Angles of certain complex numbers
reducing it to various forms: for example, the one in the title, or 2*pi*k(ln m) = a(ln(n/m)), and so forth. My gut feeling is that it is true (that no such foursome exists), but manipulations have not got me anywhere. Anyone push me in the right direction? I am probably overlooking something...- nomadreid
- Thread
- Angles Complex Complex numbers Numbers
- Replies: 15
- Forum: Precalculus Mathematics Homework Help
-
S
I Principal difference between complex numbers and 2D vectors revisited
I know this topic was raised many times at numerous forums and I read some of these discussions. However, I did not manage to find an answer for the following principal question. I gather one deals with the same set in both cases equipped it with two different structures (it is obvious if one...- SVN
- Thread
- 2d Complex Complex numbers Difference Numbers Vectors
- Replies: 24
- Forum: General Math
-
F
Geometric sum using complex numbers
Solution to the problem tells us that ##S_5 + i S_6## is the sum of the terms of a geometric sequence and thus the solutions should be : $$S_5 = \frac{\sin( (n+1) x)}{\cos^n(x) \sin(x)},\,\,\,\, S_6 = \frac{\cos^{n+1}(x) - \cos((n+1)x)}{\cos^n(x) \sin(x)} , x \notin \frac{\pi}{2} \mathbb{Z}$$...- fatpotato
- Thread
- Complex Complex numbers Geometric Numbers Sum
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
A tricky question with complex numbers
All i was able to think was that i have to find a point (x,y) such that sum of its distances from points (0,0),(1,0),(0,1) and (3,4) is minimum.I tried by assuming the point to be centre of circle passing through any of the above 3 points,But it didn't helped me.- Physics lover
- Thread
- Complex Complex numbers Numbers
- Replies: 29
- Forum: Precalculus Mathematics Homework Help
-
I Trouble with infinity and complex numbers
Summary: Trouble with infinity and complex numbers, just curious. I'm not too familiar with set theory ... but <-∞, ∞> contains just real numbers? Does something similar to <-∞, ∞> exist in Complex numbers? My question, is it "wrong"?- Troxx
- Thread
- Complex Complex numbers Infinity Numbers
- Replies: 12
- Forum: General Math
-
F
I Necessity of Complex Numbers in Quantum Mechanics
Summary: Which properties of ##\mathbb{C}## are actually necessary? The following is speculative as well as a honestly meant question about the way QM is modeled. I don't want to create a new theory, just understand the necessities of the old one. Physicists use complex numbers for QM. But...- fresh_42
- Thread
- Complex Complex numbers Numbers Qm
- Replies: 33
- Forum: Quantum Interpretations and Foundations
-
What Is the Smallest Positive Argument for the Sum of Complex Roots of Unity?
--Continued-- 7) Let ##\sum_{k=0}^9 x^k = 0## Find smallest positive argument. Same thing as previous question, but I guess I can expand to ##z+z_{2}+z_{3}+...+z_{9}=0## ##z=re^{iθ}## ##re^{iθ}+re^{2iθ}+re^{3iθ}+...## What do I do to proceed on? Cheers- jisbon
- Thread
- Complex Complex numbers Numbers
- Replies: 27
- Forum: Precalculus Mathematics Homework Help
-
How Do You Solve Complex Number Equations in Quadratics and Exponentials?
Hello all! Thanks for helping me out so far :) Really appreciate it. I don't seem to understand some of the questions presented to me, so if anyone has an idea on how to start the questions, please do render your assistance :) 4) Take ##3+7i## is a solution of ##3x^2+Ax+B=0## Since ##3+7i## is...- jisbon
- Thread
- Complex Complex numbers Numbers
- Replies: 39
- Forum: Precalculus Mathematics Homework Help
-
Help Checking a Complex Numbers Problems
Hello, here with some complex number questions which I need some assistance in checking :) 1) z=3+5i1+3iz=3+5i1+3i Find Re(z) and Im(z) My answer is 9595 and −25−25 respectively. Checked by Wolfram 2) Find principal argument of the complex numberz=−5+3iz=−5+3i and express it in radians up to 2...- jisbon
- Thread
- Complex Complex numbers Numbers
- Replies: 7
- Forum: Precalculus Mathematics Homework Help
-
Complex numbers: if (u+v)/(u-v) is purely imaginary, show that mod(u)=mod(v)
I'm kind of stuck over here at one part, but something is telling me that it might be wrong too :( Do assist, thanks.- jisbon
- Thread
- Complex Complex numbers Imaginary Numbers
- Replies: 20
- Forum: Calculus and Beyond Homework Help
-
A Complex Numbers Not Necessary in QM: Explained
[Note from mentor: This was split off from another thread, which you can go to by clicking the arrow in the quote below] Actually they are not. See https://www.amazon.com/dp/3319658662/?tag=pfamazon01-20 Sec. 5.1.- Demystifier
- Thread
- Complex Complex numbers Numbers Qm
- Replies: 219
- Forum: Quantum Physics
-
Help w/ Circuit Theory: Complex Numbers & Voltage
Hi, I'm working on an assignment for circuit theory, and I'm wondering if someone could let me know if I'm heading in the right direction? 1) I have a voltage value of 120 /_0 (polar form), from this can I assume that Arctan (a/b) =0, so voltage =120 in phase? Therefore, V =120+J0, where V...- Toolkit
- Thread
- Complex Complex numbers Numbers
- Replies: 2
- Forum: Introductory Physics Homework Help
-
F
B How can complex numbers be elevated to complex powers?
Hello I thought is would be fun to try a problem in which I had a complex number elevated to a complex power. To do this, I first tried to manipulate the general equation ## z^{w} ## (where ##z ## and ##w## are complex numbers) to look a bit more approachable. My work is as follows: ##z^{w}##...- ForceBoy
- Thread
- Complex Complex numbers Exponents Numbers
- Replies: 12
- Forum: General Math
-
Write ##5-3i## in the polar form ##re^\left(i\theta\right)##
Homework Statement Write ##5-3i## in the polar form ##re^\left(i\theta\right)##. Homework Equations $$ |z|=\sqrt {a^2+b^2} $$ The Attempt at a Solution First I've found the absolute value of ##z##: $$ |z|=\sqrt {5^2+3^2}=\sqrt {34} $$. Next, I've found $$ \sin(\theta) = \frac {-3} {\sqrt...- Mutatis
- Thread
- Complex algebra Complex numbers Form Polar Polar form
- Replies: 9
- Forum: Precalculus Mathematics Homework Help
-
I Existence of experience related to i
If we have solution of an equation as x=1, it may be expressing, depending on context, 1 apple, 1 excess certain thing, etc. And, if we have solution of an equation as x=-1, it may be expressing, depending on context, 1 deficient apple, 1 deficient certain thing, etc. Is there any experience...- Cantor080
- Thread
- Complex numbers Existence Experience Reality
- Replies: 16
- Forum: General Math
-
MHB Ap1.3.51 are complex numbers, show that
$\textsf{ If $z$ and $u$ are complex numbers, show that}$ $$\displaystyle\bar{z}u=\bar{z}\bar{u} \textit{ and } \displaystyle \left(\frac{z}{u} \right)=\frac{\bar{z}}{\bar{u}}$$ok couldn't find good example on what this is and I'm not good at 2 page proof systemsso much help is mahalo- karush
- Thread
- Complex Complex numbers Numbers
- Replies: 4
- Forum: General Math
-
H
MHB Are Non-Ordered Numbers More Than Complex Numbers?
1. The complex number are not ordered. Which else number are not ordered? 2. Are the infinitesimally numbers are ordered numbers? It there a difference between infinitesimally number to another infinitesimally number?- highmath
- Thread
- Complex Complex numbers Numbers
- Replies: 3
- Forum: Linear and Abstract Algebra
-
T
Find the Value of z in z^{1+i}=4 using Logarithms
Homework Statement Find ##z## in ##z^{1+i}=4##. Is my solution correct Homework Equations ##\log(z_1 z_2)=\log(z_1)+\log(z_2)## such that ##z_1, z_2\in \{z\in\Bbb{C} : (z=x+iy) \land (x\in\Bbb{R}) \land -\infty \lt y \lt +\infty\}## ##re^{i\theta}=r(\cos\theta + i\sin\theta)## The Attempt at a...- Terrell
- Thread
- Complex numbers Proof verification
- Replies: 1
- Forum: Precalculus Mathematics Homework Help
-
F
Complex numbers sequences/C is a metric space
Homework Statement If ##\lim_{n \rightarrow \infty} x_n = L## then ##\lim_{n\rightarrow\infty}cx_n = cL## where ##x_n## is a sequence in ##\mathbb{C}## and ##L, c \epsilon \mathbb{C}##. Homework Equations ##\lim_{n\rightarrow\infty} cx_n = cL## iff for all ##\varepsilon > 0##, there exists...- fishturtle1
- Thread
- Complex Complex numbers Metric Metric space Numbers Space
- Replies: 15
- Forum: Calculus and Beyond Homework Help
-
L
Complex numbers: adding two fractions and solving for z
Homework Statement $$\frac{1}{z}+\frac{1}{2-z}=1$$ Homework Equations Quadratic-formula and algebra The Attempt at a Solution Been struggling with this one.. I keep getting the wrong answer, but that isn't the worst part, I can live with a wrong answer as long as the math behind it is...- lamefeed
- Thread
- Complex Complex numbers Fractions Numbers
- Replies: 5
- Forum: Precalculus Mathematics Homework Help
-
L
Understanding Complex Numbers in Equations
Homework Statement So the problem I have is this silly little equation.. $$\frac {z - 7}{z + 3} = i $$Homework Equations This is the thing, I don't think you need anything more advanced than basic algebra to solve this problem. The Attempt at a Solution And I've tried solving it doing the...- lamefeed
- Thread
- Complex Complex numbers Numbers
- Replies: 20
- Forum: Precalculus Mathematics Homework Help
-
P
Superposition Theorem with complex numbers
1. Homework Statement . Figure 1 shows a 50 Ω load being fed from two voltage sources via their associated reactances. Determine the current i flowing in the load by: (a) Thevenin's theorem (b) Superposition (c) Transforming the two voltage sources and their associated reactances into current...- pgetts
- Thread
- Complex Complex numbers Numbers Superposition Superposition theorem Theorem
- Replies: 11
- Forum: Engineering and Comp Sci Homework Help
-
K
I Using complex numbers or phasor transform to solve O.D.E's
Hi particular solution only. As an example of what I am talking about, this method works for this DE: $$ 4y' + 2y = 10\cos(x) \\ \\ 10 \cos(x) = \Re( 10 e^{j(x)} ) = \Re(e^{j(x)} \cdot e^{j(0)} ) \rightarrow \text{complex number that captures the amplitude and phase of 10 cos x is} \\ 10...- K Murty
- Thread
- Complex Complex numbers Numbers Phasor Transform
- Replies: 3
- Forum: Differential Equations
-
Problem involving complex numbers
Homework Statement Refer given image. Homework Equations Expansion of determinant. w^2+w+1=0 where w is cube root of 1. The Attempt at a Solution Expanding the determinant I got cw^2+bw+a-c=0. Well after that I have no idea how to proceed.- ubergewehr273
- Thread
- Complex Complex numbers Determinant Numbers
- Replies: 5
- Forum: Precalculus Mathematics Homework Help
-
I What Is the New Dimension in Complex Number Graphs?
Hi. If you have seen the above image which shows a parabola then you can also see that there is a colored portion of the parabola that have solution in "another dimension" - the "another dimension" can give me new numbers to form a solution of a function like f(x) = x2 + 1. 1. Is this "another...- pairofstrings
- Thread
- Complex Complex numbers Dimensions Numbers
- Replies: 19
- Forum: General Math
-
N
I Sinusoids as Complex numbers (multiplication query)
DSP Guide .com has the highly rated textbook for digital signal processing. Chapter 30 pg 561 on Complex Numbers http://www.dspguide.com/ch30.htm (chapters are free to download) Hes talking about representing sinusoids with a complex number. Author states "Multiplying complex numbers A and...- Natalie Johnson
- Thread
- Complex Complex numbers Numbers Sinusoids
- Replies: 11
- Forum: General Math
-
Calculators HP 50G complex numbers with a fraction?
I have a problem to put the complex number in mode (1000/3, ∠36.87), apparently the division simbol gives some syntax error- Leandro de Oliveira
- Thread
- Complex Complex numbers Fraction Numbers
- Replies: 3
- Forum: Computing and Technology
-
I Complex Numbers in Wave Function: QM Explained
I just need to know. Why exactly what's the complex number i=√–1 put in the wave function for matter. Couldn't it have just been exp(kx–wt)?- Zaya Bell
- Thread
- Complex Complex numbers Numbers Qm
- Replies: 4
- Forum: Quantum Physics
-
Understanding Complex Number Equations: An Exploration
Homework Statement if ## x + iy## = ## \frac a {b+ cos ∅ + i sin ∅} ## then show that ##(b^2-1)(x^2+y^2)+a^2 = 2abx##Homework EquationsThe Attempt at a Solution i let ## ... ##x + iy = ## \ a(b+cos ∅ - i sin ∅)##/ ##(b + cos ∅)^2 + sin^2∅ ##...got stuck here... alternatively i let ## b +...- chwala
- Thread
- Complex Complex numbers Numbers
- Replies: 44
- Forum: Calculus and Beyond Homework Help
-
I Is there a typo in the formula for dividing complex numbers?
Quick question. While going over complex numbers in my book, I think I came across a typo and I wanted to be sure I had the right information. In the paragraph going over dividing complex numbers, my book has: ##|\frac{z_1}{z_2}|=|\frac{z_1}{z_2}|## That's obviously true. Should that be...- Drakkith
- Thread
- Complex Complex numbers Numbers
- Replies: 4
- Forum: General Math
-
I Using Complex Numbers to find the solutions (simple Q.)
Say you have an un-damped harmonic oscillator (keep it simple) with a sine or cosine for the forcing function. We can exploit Euler's equation and solve for both possibilities (sine or cosine) at the same time. Then, once done, if the forcing function was cosine, we choose the real part as the...- JTC
- Thread
- Complex Complex numbers Euler Imaginary Numbers
- Replies: 3
- Forum: Differential Equations
-
Using NVA to Solve for i in Polar Form | Complex Numbers Homework
Homework Statement Use NVA to solve for ##i##. Enter your answer in polar form with the angle in degrees. Homework EquationsThe Attempt at a Solution My nodes are as follows: ##V_1## on the left middle junction, ##V_2## is the junction in the very center, and ##V_3## is the junction on the...- Drakkith
- Thread
- Complex Complex numbers Numbers
- Replies: 8
- Forum: Engineering and Comp Sci Homework Help
-
A
MHB A complex numbers' modulus identity.
I am searching for a shortcut in the calculation of a proof. The question is as follows: 2.12 Prove that: $$|z_1|+|z_2| = |\frac{z_1+z_2}{2}-u|+|\frac{z_1+z_2}{2}+u|$$ where $z_1,z_2$ are two complex numbers and $u=\sqrt{z_1z_2}$. I thought of showing that the squares of both sides of the...- Alone
- Thread
- Complex Complex numbers Identity Modulus Numbers
- Replies: 1
- Forum: General Math
-
D
MHB Complex Residue Calculation at a Specific Point
My residue is wrong. What is the solutions and the steps to achieve it ?- Doomknightx9
- Thread
- Complex Complex numbers Integrals Numbers
- Replies: 1
- Forum: Calculus
-
T
How Can You Simplify the Calculation of a Complex Number Raised to a Power?
Hi I was hoping some of you would give me a clue on how to solve this complex number task. z = (1 +(√3 /2) + i/2)^24 → x=(1 +(√3 /2), y= 1/2 I think there must be some nice looking way to solve it. My way was to calculate |z| which was equal to [√(3+2√3)]/2 → cosθ = x/|z|, sinθ= y/|z| After...- TheColector
- Thread
- Calculation Complex Complex number Complex numbers
- Replies: 8
- Forum: Precalculus Mathematics Homework Help
-
M
B Complex numbers imaginary part
Hello everyone. Iam reading about complex numbers at the moment ad Iam quite confused. I know how to use them but Iam not getting a real understanding of what they actually are :-( What exactly is the imaginary part of a complex number? I read that it could in example be phase... Thanks in...- MikeSv
- Thread
- Complex Complex numbers Imaginary Numbers
- Replies: 11
- Forum: General Math
-
W
Complex Numbers: Euler's formula problem
Homework Statement Homework EquationsThe Attempt at a Solution I attempted to use the formula zj = xj + iyj to substitute both z's. Further simplification gave me (x1 + x2)cosθ + (y2 - y1)sinθ or, Re(z2 + z1)cosθ + Im(z2 - z1)sinθ. Is this a valid answer? Or are there any other identities...- WWCY
- Thread
- Complex Complex numbers Euler Formula Numbers
- Replies: 2
- Forum: Precalculus Mathematics Homework Help
-
Y
MHB Geometric Series with Complex Numbers
Hello all, Three consecutive elements of a geometric series are: m-3i, 8+i, n+17i where n and m are real numbers. I need to find n and m. I have tried using the conjugate in order to find (8+i)/(m-3i) and (n+17i)/(8+i), and was hopeful that at the end I will be able to compare the real and...- Yankel
- Thread
- Complex Complex numbers Geometric Geometric series Numbers Series
- Replies: 3
- Forum: General Math