Fourier Definition and 1000 Threads

  1. N

    Fourier Transform of x(t) and g(t) with Product Calculation

    Homework Statement x(t) = 5cos(2*pi*1000*t) and g(t) = ∑ from n=-infinity to infinity delta(t-n/10000) find Fourier transform of x(t) and g(t) and the product of the two The Attempt at a Solution x(w) = 5*sqrt(pi/2) [delta(w-2000pi)+delta(w+2000pi)] g(w) = 1 so would the...
  2. N

    Fourier series / calculate power over resistor

    Homework Statement V(t) = 4 for 0<t< 1 and 0 for 1<t<3 and repeats itself for all t (negative and positive) Find the first 5 harmonics of the Fourier series in cosine form and find the power if this is the voltage over 100 ohm resistor The Attempt at a Solutionpower = d_dc ^2 / R + .5sum...
  3. J

    Other definition for fourier series

    Is correct to define Fourier series like: f(t)=\sum_{k=0}^{\infty}a_k \cos \left (\frac{2 \pi k t}{T} \right ) + b_k \sin \left (\frac{2 \pi k t}{T} \right ) Where ak and bk: a_k=\frac{1}{T} \int_{-T}^{+T} f(t) \cos \left (\frac{2 \pi k t}{T} \right ) dt b_k=\frac{1}{T}...
  4. M

    How do we find the Fourier coefficient for a cosine term in a Fourier series?

    hey pf! okay, so if you've studied PDEs you know the value of a Fourier series, and the difficulty of determining a Fourier coefficient. my question relates to finding this coefficient. briefly, i'll define a Fourier series as f(x)=\sum_{n=0}^{\infty} A_n\cos\frac{n\pi x}{L}+B_n\sin\frac{n\pi...
  5. N

    How Do You Calculate Fourier Series Coefficients for a Piecewise Function?

    Homework Statement x(t) = 4 for 0 <x<1 and 0 otherwise and this process repeats for all values including negative. find X_0 and X_n and find the first 6th harmonics of the Fourier series in cosine form Homework Equations The Attempt at a Solution x_0 = 4/3 x_n =...
  6. I

    Fourier transform of a functional

    Hello, I was wondering if such a thing even exists, so here it goes... Let's say I have a function x(s) (it is real, smooth, differentiable, etc.) defined on (0,1). In addition, dx/ds = 0 on the boundary (s=0 and s=1). I can compute its Fourier transform (?) as a_p = \int_0^1 x(s)...
  7. V

    Fourier Transform of Distribution

    Hi, I hope somebody can help me with this one. Homework Statement Compute the Fourier Transform of the distribution x-a Homework Equations The Fourier Transform of a distribution is just the distribution evaluated with the Fourier Transform of a test function.The Attempt at a Solution See...
  8. A

    Fourier Transform: Determining Constant in Convolution

    I have an exercise with a function of the form: h(t) = f(t)g(t) and f(t) and g(t) both have discrete Fourier series, which implies that h does too. I want to find the Fourier series of h, so my teacher said I should apply the convolution theorem which would turn the product above into a...
  9. U

    How Do You Solve Differential Equations Using Fourier Transform?

    Homework Statement Part (a): State inverse Fourier transform. Show Fourier transform is: Part (b): Show Fourier transform is: Part (c): By transforming LHS and RHS, show the solution is: Part(d): Using inverse Fourier transform, find an expression for T(x,t) Homework Equations The Attempt...
  10. M

    How Can You Solve Alternating Solutions in Fourier Series?

    Homework Statement This is a general question, no real problem statement and is connected to solving Fourier series. You know that to solve it, you need to find a_{n}, a_{0} and b_{n}. Homework Equations When solving the above mentioned ''coefficients'' you can get a solution with sin or...
  11. dexterdev

    Which of the signals is not the result of fourier series expansion?

    Homework Statement Which of the signals is not the result of Fourier series expansion? options : (a) 2cos(t) + 3 cos(3t) (b) 2cos(\pit) + 7cos(t) (c) cos(t) + 0.5 Homework Equations Dirichlet conditionsThe Attempt at a Solution From observation, I thought all are periodic and so must be...
  12. P

    Problem in Convolution integral by fourier transformation

    Hello, I am trying to numerically evaluate a convolution integral of two functions (f*g) using Fourier transform (FT) i.e using FT(f*g) = FT(f) multiplied by FT(g) (1) I am testing for a known case first. I have taken the gaussian functions (eq. 5, 6 and 7) as given in...
  13. D

    Solving Real Valued Fourier Coefficients

    Homework Statement Let ##f## be a ##2\pi## periodic function. Let ##\hat{f}(n)## be the Fourier coefficient of ##f## defined by $$ \hat{f}(n)=\frac{1}{2\pi}\int_{a}^{b}f(x)e^{-inx}dx. $$ for ##n\in\mathbb{N}##. If ##\overline{\hat{f}(n)}=\hat{f}(-n)## show that ##f## is real valued. The...
  14. J

    Airy integral by Fourier transform?

    http://calclab.math.tamu.edu/~fulling/m412/f07/airywkb.pdf Can someone walk me through this derivation of the Airy integral by Fourier transform? I have tried it but failed
  15. E

    Is the Discrete Fourier Transform a Unitary Transformation?

    I'm trying to prove that the discrete form of the Fourier transform is a unitary transformation So I used the equation for the discrete Fourier transform: ##y_k=\frac{1}{\sqrt{N}}\sum^{N-1}_{j=0}{x_je^{i2\pi\frac{jk}{N}}}## and I put the Fourier transform into a N-1 by N-1 matrix form...
  16. K

    Fourier Series for a Square-wave Function

    Homework Statement Consider the square wave function defined by y(t) = h (constant) when 0 ≤ (t + nT) ≤1, y(t) = 0 elsewhere, where T = 2 is the period of the function. Determine the Fourier series expansion for y(t). Homework Equations Fourier Analysis Coefficients The Attempt...
  17. D

    Fourier Series from m=1 to infinity

    Simple question; Why isn't it \sum am (from m=1 to infinity) Thanks in advance.
  18. S

    Fourier Transforms: Proving Proportionality

    1. We consider the on shell wave packet: \varphi(t,x)=\int\frac{dk}{2\pi}exp(-\frac{(k-k_{0})^{2}}{\Delta k^{2}}+ik(t-x))dk I need to show it is proportional to: exp(ik_{0}(t-x)-\frac{\triangle k^{2}}{4}(t-x)^{2})dk through a Fourier transform of the gaussian 3. I used a Fourier...
  19. N

    Do Fourier transforms always converge to 0 at the extreme ends?

    From -infinity to infinity at the extreme ends do Fourier transforms always converge to 0? I know in the case of signals, you can never have an infinite signal so it does go to 0, but speaking in general if you are taking the Fourier transform of f(x) If you do integration by parts, you get a...
  20. P

    Find the Fourier series solution to the differential equation

    Find the Fourier series solution to the differential equation x"+x=t It's given that x(0)=x(1)=0 So, I'm trying to find a Fourier serie to x(t) and f(t)=t, and I'm know it must a serie of sin... So here's my question...the limits of integration to the Bn, how do I define them? Will...
  21. N

    Fourier series of a periodic function not starting at x=-L

    Homework Statement In "oppgave 4" http://www.math.ntnu.no/emner/TMA4120/2011h/xoppgaver/tma4120-2010h.pdf you have a periodic function which is NOT periodic from ##x=-L=-\pi## to ##x=L=\pi##, but at ##x=0## and ends at ##x=2 \pi=2L##. The formulas I have (like these...
  22. N

    Why Is the Coefficient Doubled in the Fourier Sine Series Calculation?

    Homework Statement https://wiki.math.ntnu.no/_media/tma4120/2013h/tma4120_h11.pdf Check out the solution to problem 4b) My question is: Why do they set ##b_n = \frac{2}{\pi} \int_{0}^{\pi}(...)dx## instead of ##b_n = \frac{1}{\pi} \int_{0}^{\pi} (...)dx##? Ie, why did they multiply the...
  23. N

    Fourier series: complex vs ordinary method

    Hi! Which is the better method for finding Fourier expansions of a function? The ordinary one (find a_0, b_n and a_n with separate integrals), or the one which uses complex numbers (just find c_n)?
  24. B

    Fourier transform of single pulse & sequence of pulses

    Homework Statement What is the Fourier transform of a single short pulse and of a sequence of pulses? The Attempt at a Solution In class we haven't dealt with the mathematics of a Fourier transform, however my professor has simple stated that a Fourier transform is simply a equation...
  25. S

    Applying the fourier transform to a PDE

    I have a tutorial question for maths involving the heat equation and Fourier transform. {\frac{∂u}{∂t}} = {\frac{∂^2u}{∂x^2}} you are given the initial condition: u(x,0) = 70e^{-{\frac{1}{2}}{x^2}} the answer is: u(x,t) = {\frac{70}{\sqrt{1+2t}}}{e^{-{\frac{x^2}{2+4t}}}} In this course...
  26. N

    Integrate sinx/x using fourier transform?

    I learned how to integrate it using the complex plane and semi circle contours but I was wondering if there is a way using Fourier transforms. I know that the Fourier transform of the rectangle wave form is the sinc function so I was thinking maybe i could do an inverse Fourier on sinc x and get...
  27. Y

    Fourier Transform, and the uncertainty principle

    Hello, Recently I've learned about Fourier Transform, and the uncertainty principle that is arose from it. According to Fourier Transform, if there is only one pulse in a signal, then it is composed from a lot more frequencies, compared to the number of frequencies that are building a...
  28. G

    Fourier series of complex function

    Homework Statement Hello guys, I have problem with the Fourier series, since we had only one lecture about it and I cannot find anything similar to my problem in internet. should we consider for the first f(x+1) integrated from -1 to 0 ? http://img819.imageshack.us/img819/3508/wbve.jpg when...
  29. U

    Complex Fourier series of sin (t)

    In finding Cn, I arrived at a different answer. I got an extra factor of (1/i) instead, which came when you do the integral of each exponential with respect to t; so you get a factor of 1/i(1-n) and 1/i(1+n) respectively.. Did they intentionally leave that out?
  30. U

    Fourier transform of RF signal with a prism ?

    Fourier transform of RF signal with a "prism"? We can use a prism to decompose visible light into components of different frequencies. This is a Fourier transform by nature. For an ideal prism, the energy is conserved in the process. How about RF signals? There is no fundamental difference...
  31. U

    Fourier Transform of this function

    Hi guys, I'm not sure how they got from first step to the second. Did they use integration by parts? I tried but I didn't arrive at the same result..
  32. L

    Trodimensional Fourier transform

    \mathcal{F}\{f(r)\}=\int e^{i\vec{k}\cdot \vec{r}}f(r)d\vec{r} in spherical polar coordinates \mathcal{F}\{f(r)\}=\int^{\infty}_0r^2dr\int^{\pi}_0\sin\theta d\theta\int^{\pi}_0d\varphi e^{ikr\cos \theta}f(r) Why could I take ##e^{ikr\cos \theta}## and to take that ##\theta## is angle which goes...
  33. T

    Finding the Fourier Sine Series

    Find the Fourier SIne Series for f(x) = x on -L < x < L (Full Fourier) Ok, so my issue is in calculating the coefficients for the sine and cosine parts, more so an interpretation. So I have calulated the sine and cosine series to this point: let An: Cosine series Bn: sine series...
  34. M

    The windowed Fourier transform on R

    The windowed Fourier transform on R Defi nition-Proposition-Theorems (Plancherel formula-Parseval formula-inversion formula-Calderon's formula) http://www.4shared.com/office/b2Ho5n7H/The_windowed_Fourier_transform.html
  35. D

    How Do You Compute the Fourier Series for |sin(x)| Over the Interval (-1,1)?

    Hello, Find the Fourier serie of f(x)=|sin(x)| on the interval (-1,1) I'm just a little confused, does that mean that I have to integrate from -1 to 1 to find the coefficients ? Because the formula of the coefficients is in terms of the period T, for this function the period is pi. Or do I...
  36. U

    Continuous Periodic Fourier Series - Coefficients

    Homework Statement In the dirac notation, inner product of <f|g> is given by ∫f(x)*g(x) dx. Why is there a 1/∏ attached to each coefficient an, which is simply the inner product of f and that particular basis vector: <cn|f>? Homework Equations The Attempt at a Solution
  37. N

    What is the point of Fourier Series and what is it used for?

    I recently had an asignment where i calculated the Fourier series coefficients for f= 1+t for t= -1 to 0 f= 1-t for t=0-1 basically triangle looking. And as i summed more and more coefficients my function started looking more like this triangle (which was really cool). My question...
  38. T

    Fourier Series of Full Wave Rectifier

    Homework Statement Determine the Fourier series for the full-wave rectifier defined as f(t) = sinωt for 0 < ωt < pi -sinωt for -pi < ωt < 0Homework Equations The Attempt at a Solution This looks like an even function, so bm = 0 Ao = 1/pi∫sinωt from 0 to pi = 1/pi(-cos(ωt))/ω) from 0 to...
  39. D

    Fourier Series - Asymmetric Square Wave

    Good morning everyone, I am taking a signals and systems course where we are now studying the Fourier series. I understand that this is for signals that are periodic. But I get hung up when determining the Fourier coefficients. In the video by Alan Oppenheim, he derives the equation for...
  40. A

    Fourier component crystal potential - physical significance

    I have done several exercises concering periodic potentials in crystal. Especially I did one, where I had to show that the Fourier component of the shortest reciprocal lattice vector (call this vector a) in the z-direction was zero. Now solving the problem was just about writing up the right...
  41. P

    Proof of Fourier Series Coeffecients

    Homework Statement #35 on this page Homework Equations Integral of a series can be assumed to be the sum of integrals The Attempt at a Solution Picture of Work I am not sure where to proceed from here, advice?
  42. H

    Using Fourier Sine basis to write x(L-x) [0,L]

    Homework Statement A function F(x) = x(L-x) between zero and L. Use the basis of the preceding problem to write this vector in terms of its components: F(x)= \sum_{n=1}^{\infty}\alpha _{n}\vec{e_{n}} If you take the result of using this basis and write the resulting function outside the...
  43. B

    Fourier Transform - how to increment in time?

    I'm working on some research with a professor, and we're looking at data collected by an x-band radar array looking at ocean waves as they approach the coast (the radar is on land, and we can see about 3 miles out). What we're trying to do is perform an fft on the signal using Matlab, and...
  44. skate_nerd

    MHB Fourier transform of a gaussian

    I'm given a Gaussian function to apply a Fourier transform to. $$f(x)=\frac{1}{\sqrt{a\sqrt{\pi}}}e^{ik_ox}e^{-\frac{x^2}{2a^2}}$$ Not the most appetizing integral... $$g(k)=\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{a\sqrt{\pi}}}\int_{-\infty}^{\infty}e^{ik_ox}e^{-\frac{x^2}{2a^2}}e^{-ikx}dx$$...
  45. J

    Fourier Mistake: Help Jenny Out

    can someone spot my mistake, I'm stuck thanks, jenny
  46. S

    Understanding Completeness of Fourier Basis

    So the other day in class my teacher gave a proof for the completeness of \phi_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx} in L^2([-\pi,\pi]) . And I'm trying to convince my self I understand it at least a little. He defined Frejer's Kernel K_n(x) = \frac{1}{2\pi(n+1)}...
  47. Radarithm

    QM: Need Help Applying Fourier Transform

    I understand the Fourier transform conceptually, but I am unable to reproduce it mathematically; I am very familiar with calculus and integration, but I am taking a QM course and I need to know how to apply it. No websites or videos are able to give me a good explanation as to how I can use it...
  48. S

    Why Doesn't the Fourier Series of a Dirac Comb Match Pointwise Values?

    http://en.wikipedia.org/wiki/Dirac_comb Please have a look at the Fourier Series section, and its last equation. Let T = 1. After expanding the Equation x(t) = 1 + 2cos(2∏t) + 2cos(4∏t) + 2cos(6∏t) ... Now this does not give the original Dirac Comb. Eg: at t = 1/2 x(1/2) = 0 But RHS =...
  49. H

    Solving Heat Equation by Fourier Transform

    When the rod is infinite or semi-infinite, I was taught to use Fourier transform. But I don't know when should the full Fourier transform or sine/cosine transform be used. how's the B.C. related to the choice of the transform ?
  50. D

    Fourier coefficients and partial sum of Fejer

    Homework Statement f(t) a continuously differentiable function twice over the circle T1 cr its Fourier coefficients and σn(f,t) partial sum of Fejer. a.Demonstrate that http://imageshack.us/a/img94/5992/ds35.png b. Consider k as -n≤k≤n , using cr coefficients calculate...
Back
Top