Parametrization Definition and 84 Threads
-
Z
How to parametrize motion of a pendulum in terms of Cartesian coordinates?
Let the origin be where the pendulum string is attached to the ceiling. $$\sin{\theta(t)}=\frac{x(t)}{L}\tag{1}$$ $$\cos{\theta(t)}=\frac{y(t)}{L}\tag{2}$$ $$\theta(t)=\sin^{-1}{\frac{x(t)}{L}}\tag{3}$$ $$\dot{\theta}(t)=\frac{\dot{x}(t)}{\sqrt{L^2-x^2(t)}}\tag{4}$$...- zenterix
- Thread
- Parametrization Pendulum
- Replies: 1
- Forum: Introductory Physics Homework Help
-
H
I Example of SO(2) being not simply connected
The example goes like this: The group SO(2) is specified by angles ##\theta##. Let's parametrize a path by ##0 \leq t \lt 1## and consider the path ##\theta (t) = 2 \pi t##. Then it says, "There is no smooth function ##\theta (t,u)## for ##0 \leq u \leq 1##, such that ##\theta (t,0) = \theta...- Hill
- Thread
- Parametrization
- Replies: 26
- Forum: Quantum Physics
-
F
A Could a CPL parametrization be included into Brans-Dicke model?
I have studied up to now about forecasts to constrain cosmological parameters in the context of CPL( Chevallier-Polarski-Linder ) parametrization with w_0, ,w_a parameters in equation of state for cosmic fluid. For this, I have used Matter power spectra ("fake data") generated by CAMB and CLASS...- fab13
- Thread
- Beyond standard model Model Parametrization
- Replies: 2
- Forum: Beyond the Standard Models
-
A
A Feynman parametrization integration by parts
How can i move from this expression: $$\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+i(k-k_{f}))^3} \frac{1}{(1+i(k-k_{i}))^3}$$ to this one: $$\frac{4}{\pi^{4}} \int dk \frac{1}{k^2} \frac{1}{(1+|k-k_{i}|^2)^2} \frac{1}{(1+|k-k_{f}|^2)^2}$$ using Feynman parametrization (Integration by...- asmae
- Thread
- Feynman Integration Integration by parts Parametrization parts
- Replies: 1
- Forum: Other Physics Topics
-
E
I When to use Feynman or Schwinger Parametrization
I had been doing some calculations involving propagators with both a quadratic and a linear power of loop momentum in the denominator. In the context of HQET and QCD with strategy of regions. The texts which I am following sometimes tend to straightaway use Schwinger and I am just wondering if...- Elmo
- Thread
- Feynman Parametrization Qft
- Replies: 1
- Forum: High Energy, Nuclear, Particle Physics
-
I Geodesics with arbitrary parametrization
Let ##x=(x^1,\ldots,x^m)## be local coordinates in a manifold ##M##; and let ##\{\Gamma^i_{jk}(x)\}## be a connection. Assume that we have a curve ##x=x(t),\quad \dot x\ne 0##. Is this curve geodesic or not? My guess is that the answer is "yes" iff for all ##k,n## the function ##x(t)##...- wrobel
- Thread
- Geodesics Parametrization
- Replies: 3
- Forum: Differential Geometry
-
D
One-parameter parametrization of a unit circle in R^n
I tried to looking at lower-dimensional cases: For ##n=2## we have $$(x(t),y(t))=(cos(t),sin(t))$$ For ##n=3## we define two orthogonal unit vectors ##\vec{a}## and ##\vec{b}## that are orthogonal to ##\vec{u}##, leading to $$(x(t),y(t),z(t))=(cos(t)(a_1,a_2,a_3)+sin(t)(b_1,b_2,b_3))$$ It seems...- docnet
- Thread
- Circle Parametrization Unit Unit circle
- Replies: 8
- Forum: Calculus and Beyond Homework Help
-
J
I Understanding Geodesic Parametrization on a Sphere
Let us consider a sphere of a unit radius . Therefore, by choosing the canonical spherical coordinates ##\theta## and ##\phi## we have, for the differential length element: $$dl = \sqrt{\dot{\theta}^2+sin^2(\theta)\dot{\phi}^2} $$ In order to find the geodesic we need to extremize the...- Jufa
- Thread
- Geodesics Parametrization
- Replies: 3
- Forum: Differential Geometry
-
E
A Natural parametrization of a curve
Hello, I need the natural parametrization or a geodesic curve contained in the surface z=x^2+y^2, that goes through the origin, with x(s=0)=0, y(s=0)=0, dx/ds (s=0)=cos(a) and dy/ds(s=0)=sin(a), with "a" constant, expressed as a function of the arc length, i.e., I need r(s)=r(x(s),y(s)). Thank...- eva_92
- Thread
- Curve Geodesic Natural Parametrization
- Replies: 5
- Forum: Differential Geometry
-
K
Calculating crossproduct integral, Parametrization
i) I approximate the solenoid as a cylinder with height L and radius R. I am not sure how I am supposed to place the solenoid in the coordinate system but I think it must be like this, right? The surface occupied by the cylinder can be described by all vectors ##\vec x =(x,y,z)## so that...- Karl Karlsson
- Thread
- Cartesian coordinates Cross product Cylindrical coordinates Integral Parametrization
- Replies: 5
- Forum: Calculus and Beyond Homework Help
-
A
I How Does Parametrization Help Describe Particle Motion in Mathematics?
To describe the equation of a line, in 2 dimensions, we need a (point on the line + slope to measure slantiness) or two points. Another way: The trajectory of a moving point along the line. Suppose that the moving point initially is at a point of know coordinates r0=(x(t=0), y(t=0), z(t=0)) and... -
F
I Triad T, N, B and path parametrization
Hello, In 3D, the trajectory, which is a curve, represents all the points that an object occupies during its motion. Given a certain basis (Cartesian, cylindrical, spherical, etc.), the instantaneous position of the moving object, relative to the origin, along its trajectory can always be... -
W
I Parametrization manifold of SL(2,R)
I'm reading a book on Lie groups and one of the first examples is on SL(2,R). It says that every element of it can be written as the product of a symmetric matrix and a rotation matrix, which I can see, but It also makes the assertion that the symmetric matrix can be parameterized by a...- Wledig
- Thread
- Lie groups Manifold Parametrization
- Replies: 4
- Forum: Linear and Abstract Algebra
-
B How Many Parameters Are Needed to Parametrize the 3-Sphere?
The equation is $$\|\left(\begin{array} &a\\b\\c\\d\end{array}\right)\|^2=1$$ I was wondering if the number of parameters is 6 and not 3, since we can consider rotations in the differents planes : we choose 2 directions among 4 hence $$C^4_2=6$$ possibilities ?- jk22
- Thread
- Geometry Parametrization
- Replies: 19
- Forum: Differential Geometry
-
M
MHB How Do We Find the Parametrization σ?
Hey! :o I want to show that $\iint_{\Sigma}(\nabla\times f)\cdot d\Sigma=0$ for the function $f(x,y,z)=(1,1,1)\times g(x,y,z)$ when $\Sigma$ is the surfcae that is defined by the relations $x^2+y^2+z^2=1$ and $x+y+z\geq 1$. I have done the following: Let $g(x,y,z)=(g_1, g_2, g_3)$. Then... -
Parametrize the Curve of Intersection
Hi everyone! I'm a student of electrical engineering. At my math class, we were given a problem to solve at home. Now, from what I've managed to gather, this is a trick question, but I would like to get someone else's opinion on the task. It's also worth mentioning that parametrization is a...- peroAlex
- Thread
- Curve Differential geometry Intersection Parametrization
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
MHB Why Does γ(t) = z(1-t) Represent the Same Curve in Reverse?
I am reading "Complex Analysis for Mathematics and Engineering" by John H. Mathews and Russel W. Howell (M&H) [Fifth Edition] ... ... I am focused on Section 1.6 The Topology of Complex Numbers ... I need help in fully understanding a remark by M&H ... made just after Example 1.22 ... Example...- Math Amateur
- Thread
- Complex Curves Example Parametrization
- Replies: 1
- Forum: Topology and Analysis
-
J
I Surface parametrization and its differential
I will use an example: -The surface is given by the intersection of the plane: y+z=2 -And the infinite cilinder: x2+y2<=1 We want to parametrize this surface, it could be done easily with: x=r cosθ y=r sin θ z=2 - r cos θ Then this surface could be written using vector notation: S= r... -
F
I Contour integration - reversing orientation
I have been reading through "Complex Analysis for Mathematics & Engineering" by J. Matthews and R.Howell, and I'm a bit confused about the way in which they have parametrised the opposite orientation of a contour ##\mathcal{C}##. Using their notation, consider a contour ##\mathcal{C}## with...- Frank Castle
- Thread
- Complex analysis Contour integral Integration Intuition Orientation Parametrization
- Replies: 5
- Forum: Calculus
-
F
I Parametrization and kinematics
Hello Forum, In kinematics, the important variables are the velocity v, the acceleration a, and the object's position x. These variables are usually presented as functions of time: x(t), v(t) and a(t). The acceleration can either be constant, or vary with time, i.e. a(t), or vary with position... -
Parametrization for Surface F and Area A
An area A in the (x,y) plane is limited by the y-axis and a parabola with the equation x=6-y^2. Further, is a surface F given by the part of the graph for the function h(x,y)=6-x-y^2 which satisfies the conditions x>=0 and z>=0. Determine a parametrization for A and for F. So far I've got the...- CGMath
- Thread
- Parametrization Surface
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
I Parameterize an offset ellipse and calculate the surface area
I'm given that: S is the surface z =√(x² + y²) and (x − 2)² + 4y² ≤ 1 I tried parametrizing it using polar coordinates setting x = 2 + rcos(θ) y = 2rsin(θ) 0≤θ≤2π, 0≤r≤1 But I'm not getting the ellipse that the original equation for the domain describes So far I've tried dividing everything...- Thales Costa
- Thread
- Area Ellipse Parameterize Parametrization Surface Surface area
- Replies: 5
- Forum: Calculus
-
MHB Find a parametrization of the following level curves
Hello! (Wave) Is $r(t)=(t^2,t^4)$ a parametrization of the parabola $y=x^2$? I have written the following: For $x(t)=t^2$ and $y(t)=t^4$ we have that $y(t)=t^4=(t^2)^2=x^2(t)$, so $r(t)=(t^2,t^4)$ a parametrization of the parabola $y=x^2$. Is it right? How could we say it more formally...- evinda
- Thread
- Parametrization
- Replies: 33
- Forum: Topology and Analysis
-
Parametrization of implicit curve
Homework Statement y^2 + 3x - x^3 = C, C\in\mathbb{R}\setminus\{0\} Homework EquationsThe Attempt at a Solution Keeping in mind that ##\cos ^2\alpha + \sin ^2\alpha = 1## I would go about it \left (\frac{y}{\sqrt{C}}\right )^2 + \left (\frac{\sqrt{3x-x^3}}{\sqrt{C}}\right )^2 = 1 would then...- nuuskur
- Thread
- Curve Implicit Parametrization
- Replies: 3
- Forum: Precalculus Mathematics Homework Help
-
S
Curve integral, singularity, and parametrization
Well, it's physics friday! (carpe diem etc, what else) :) 1. Homework Statement I present to you this (not so) pleasant expression that seemingly appeared on a page out of nowhere. \vec{F}(r, \theta, \varphi) = \frac{F_0}{ar \sin\theta}[(a^2 + ar \sin\theta \cos\varphi)(\sin\theta \hat{r} +...- S. Moger
- Thread
- Curve Integral Parametrization Singularity
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
J
Torus parametrization and inverse
I've been looking at the torus parametrization \begin{equation} \phi(u,v)=((r\cos u+a)\cos v, (r\cos u +a)\sin v, r\sin u) \end{equation} with \begin{equation}a>0, r\in(0,a)\end{equation}. I want to invert this map to get a chart map for the torus. Can anyone give me a hand with this? Thanks!- Jess_l
- Thread
- Inverse Parametrization Torus
- Replies: 1
- Forum: Differential Geometry
-
B
Parametrization of a curve(the intersection of two surfaces)
Homework Statement I am looking to find the parametrization of the curve found by the intersection of two surfaces. The surfaces are defined by the following equations: z=x^2-y^2 and z=x^2+xy-1 Homework EquationsThe Attempt at a Solution I can't seem to separate the variables well...- BennyT
- Thread
- Intersection Parametrization Surfaces
- Replies: 7
- Forum: Calculus and Beyond Homework Help
-
Relativity Can't remember where I read this (when using the proper-time parametrization)
A while ago, I read a proof in a book on GR that when using the proper-time parametrization, the two conditions ## \delta \int_{\lambda_1}^{\lambda_2} \sqrt{-g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu} d\lambda=0## and ## \delta \int_{\lambda_1}^{\lambda_2} (-g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu)...- ShayanJ
- Thread
- Parametrization
- Replies: 12
- Forum: Science and Math Textbooks
-
Is this a valid parametrization of the torus?
I am reading "Differential Geometry of Curves and Surfaces" by Manfredo do Carmo and on page 156 he gives the following parameterization of the torus x(u,v) = ((a + r cos u )cos v, (a + r cos u)sin v, r sin u) 0 < u < 2*pi, 0 < v < 2*pi Doesnt this leave out some of the torus,? I know that...- hideelo
- Thread
- Parametrization Torus
- Replies: 3
- Forum: Differential Geometry
-
Parametrization of Witch of Agnesi
Homework Statement The question is completely described in the photo. Homework Equations Trigonometric translation properties The Attempt at a Solution The problem is in two dimensions, so I'm ignoring the z coordinates. For a circle centered at (0,a), the position vector of P is ##(a##...- PWiz
- Thread
- Parametrization
- Replies: 2
- Forum: Precalculus Mathematics Homework Help
-
S
Can the Thickness of a 3D Spiral Curve be Defined Parametrically?
Hello! There is a parametric way of defining a spiral curve: z = a*t; x = r1*cos(w*t) y = r2*sin(w*t). Is there a way to define the thickness of spiral?- sukharef
- Thread
- 3d Parametrization Spiral
- Replies: 2
- Forum: General Math
-
Poincare Transformations: Parametrization-Independent
Well if I have a worldline given by x^{\mu}(\tau) And I want to make a Poincare transformation: x^{\mu} (\tau) \rightarrow \Lambda^{\mu}_{\nu} x^{\nu}(\tau) + a^{\mu}. I have one question,why can't a, \Lambda explicitly depend on \tau? that is to have: x^{\mu}(\tau) \rightarrow...- ChrisVer
- Thread
- Independent Parametrization Poincare Transformations
- Replies: 13
- Forum: Special and General Relativity
-
A
Find the arc length parametrization of a curve
Homework Statement Find the arc length parametrization of the curve r = (3t cost, 3tsint, 2sqrt(2)t^(3/2) ) . Homework Equations s(t)=integral of |r'(t)| dt The Attempt at a Solution I was able to get the integral of the magnitude of the velocity vector to simplify to: s(t) = integral of...- AramN
- Thread
- Arc Arc length Calculus Curve Integral Length Parametrization Vector
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
S
MHB Finding the parametrization of the curve
A particle moves along the curve $$9x^2 + 16y^2 = 144$$ a)Find a parametrization of the curve which corresponds to the particle making one trip around the curve in a clockwise direction starting at (4,0) so I know that $$cos^2t + sin^2t = 1$$ which is a circle. I also know that $$x^2 + y^2 =... -
J
Integral after alpha parametrization
I have been stuck on the following double integral for some time: ∫(0 to inf) dα1 ∫(0 to inf) dα2 a1^(n1) * exp(-i (α1+α2) m^2) * (α1+α2)^(n2) which arose after using alpha paremetrization on a Feynman integral. I was advised by my supervisor to use the substitution α1 = 1/2 (t+u) and α2 = 1/2...- jd24680
- Thread
- Alpha Integral Parametrization
- Replies: 1
- Forum: Differential Equations
-
J
MHB Parametrization of a Reduced Matrix
I'm facing some doubts regarding the parametrization of a given matrix. Let's say, the following matrix is reduced. From: $\begin{bmatrix}0 & 2 & -8\\0 & 2 & 0\\0 & 0 & 2\end{bmatrix}$ To: $\begin{bmatrix}0 & 1 & 0\\0 & 0 & 1\\0 & 0 & 0\end{bmatrix}$ To Parametrize that I would do the...- Jundoe
- Thread
- Matrix Parametrization
- Replies: 2
- Forum: Linear and Abstract Algebra
-
Affine parametrization for null geodesic?
The geodesic equation for a path X^\mu(s) is: \frac{d}{d s} U^\mu + \Gamma^\mu_{\nu \tau} U^\nu U^\tau = 0 where U^\mu = \frac{d}{ds} X^\mu But this equation is only valid for affine parametrizations of the path. For a timelike path, being affine means that the parameter s must be...- stevendaryl
- Thread
- Geodesic Parametrization
- Replies: 57
- Forum: Special and General Relativity
-
Finding the Arc Length Parameterization of a Vector Function
Homework Statement Find the arc length parameterization of r(t) = <(e^t)sin(t),(e^t)cos(t),10e^t>The Attempt at a Solution so I guess i'll start by taking the derivative of r(t)... r'(t) = <e^t*cos(t) + e^t*sin(t), -e^t*sin(t) + e^t*cos(t), 10e^t> ehh... now do I do ds = |r'(t)|dt and...- PsychonautQQ
- Thread
- Arc Arc length Length Parametrization
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
W
Find appropriate parametrization to find area bounded by a curve
Problem: Use an appropraite parametrization x=f(r,\theta), y=g(r,\theta) and the corresponding Jacobian such that dx \ dy \ =|J| dr \ d\theta to find the area bounded by the curve x^{2/5}+y^{2/5}=a^{2/5} Attempt at a Solution: I'm not really sure how to find the parametrization. Once I...- wifi
- Thread
- Area Bounded Curve Parametrization
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
A
Parametrization of uniformly distributed n dimensional states
Any two dimensional state can be written as: |\phi\rangle=\cos\frac{\theta}{2}|0\rangle+e^{i\phi}\sin\frac{\theta}{2}|1\rangle where 0\leq\theta\leq\pi and 0\leq\phi\leq 2\pi, and 0\leq\theta\leq\pi. To pick one such state uniformly at random it suffices to draw \phi at random from its...- Arubaito
- Thread
- Distributed Parametrization States
- Replies: 14
- Forum: Quantum Physics
-
T
Surface integrals and parametrization
An area A in the xy-plane is defined by the y-axis and by the parabola with the equation x=6-y^2. Furthermore a surface S is given by that part of the graph for the function h(x,y)=6-x-y^2 that satisfies x>=0 and z>=0. I have to parametrisize A and S. Could this be a...- Tala.S
- Thread
- Integrals Parametrization Surface Surface integrals
- Replies: 16
- Forum: Calculus and Beyond Homework Help
-
K
Parametrization of a Portion of a Sphere
Homework Statement Let ##S## be the portion of the sphere ##x^2 + y^2 + z^2 = 9##, where ##1 \le x^2 + y^2 \le 4## and ##z \ge 0##. Give a parametrization of ##S## using polar coordinates. Homework Equations The Attempt at a Solution ##1 \le r \le 2 \\ 0 \le \theta \le 2\pi \\ 0...- Karnage1993
- Thread
- Parametrization Sphere
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
T
Parametrization of plane curves
1. The function f(x,y) = x + y 2. The area A is formed by the lines : x = 0 and x = pi/4 and by the graphs : x + cos(x) and x + sin(x) 3. I have to parametrize A 4. 'Formula' : r(u,v) = (u,v*f(u)+(1-v)*g(u)) Could this be a parameterization of A : assuming f(u) = u+ cos(u)...- Tala.S
- Thread
- Curves Parametrization Plane
- Replies: 8
- Forum: Calculus and Beyond Homework Help
-
Y
Solve SU(2) Parametrization Problem w/ Westra's PDF
I have a trivial mathematical problem with SU(2) parametrization. In www.mat.univie.ac.at/~westra/so3su2.pdf , section 3, there is a sentence starting with "We first assume b = 0 and find then(...)". My question is: doesn't assuming that b = 0 reduce generality of our parametrization? If not, why?- yoreh
- Thread
- Parametrization Su(2)
- Replies: 1
- Forum: Linear and Abstract Algebra
-
S
Greens theorem and parametrization
Hello. I just wonder if anybody know if there are any rules, when to use parametrization to greens theorem in a vector line integral over a plane. Becouse, it seems sometimes, you have to parametrizice, and other places you dont. I get confused. -
E
Parametrization of a regular planar polygon with an arbitrary number of sides
I was wondering if anyone knew of a common technique for parametrizing a regular polygon with an arbitrary number of sides. I figured such a problem would be easy or at least be well documented online, but that doesn't seem to be the case. I started by assuming that the polygon was centered... -
C
Find a parametrization of the vertical line passing through the point
Homework Statement Find a parametrization of the vertical line passing through the point (7,-4,2) and use z=t as a parameter. Homework Equations r(t) = (a,b,c) + t<x,y,z> The Attempt at a Solution I used (7,-4,2) as (a,b,c) (the point) and used <0,0,1> for the vector since it had...- Colts
- Thread
- Line Parametrization Point Vertical
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
C
Question about parametrization and number of free variables
Hey guys, how come when you have a parametric equation with two free variables it creates a surface, but when you have a parametric equation with one free variable it draws out a line? I sort of get it intuitively, one dimension is just a line, two dimensions is a plane, so I guess this sort of...- coolbeans777
- Thread
- Parametrization Variables
- Replies: 2
- Forum: General Math
-
F
Parametrization of a line formed by 3 points
Homework Statement Find a parametrization of the equation of the line formed by the points A, B, and P. A(2,-1,3) B(4,3,1) P(3,1,2)Homework Equations x=x_0+v_1*t y=y_0+v_2*t z=z_0+v_3*tThe Attempt at a Solution Alright, so, I've already determined that P is equidistant from the points A and...- forestmine
- Thread
- Line Parametrization Points
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
V
Parametrization question for my Intro. to Higher Math Class
Two objects A and B are traveling in opposite direction on a straight line. At t=0 A and B are at positions P(A)=(-40, -20) and P(B)=(190, 980), respectively. If additionally, their paths are parameterized by directions V(A)=(3,5) and V(B)=(-24, -40), respectively. Then, a) find the point...