volume element Definition and 21 Threads

  1. binbagsss

    I 4d integration/differentiation notation and the total derivative

    This is probably a stupid question but, ## \frac{d\partial_p}{d\partial_c}=\delta^p_c ## For the notation of a 4D integral it is ##d^4x=dx^{\nu}##, so if I consider a total derivative: ##\int\limits^{x_f}_{x_i} \partial_{\mu} (\phi) d^4 x = \phi \mid^{x_f}_{x_i} ## why is there no...
  2. L

    A Volume element in Spherical Coordinates

    For me is not to easy to understand volume element ##dV## in different coordinates. In Deckart coordinates ##dV=dxdydz##. In spherical coordinates it is ##dV=r^2drd\theta d\varphi##. If we have sphere ##V=\frac{4}{3}r^3 \pi## why then dV=4\pi r^2dr always?
  3. Diracobama2181

    A Volume Element for Isotropic Harmonic oscillator

    I am currently having trouble deriving the volume element for the first octant of an isotropic 3D harmonic oscillator. I know the answer I should get is $$dV=\frac{1}{2}k^{2}dk$$. What I currently have is $$dxdydz=dV$$ and $$k=x+y+z. But from that point on, I'm stuck. Any hints or reference...
  4. Q

    I Deriving the spherical volume element

    I’m trying to derive the infinitesimal volume element in spherical coordinates. Obviously there are several ways to do this. The way I was attempting it was to start with the cartesian volume element, dxdydz, and transform it using $$dxdydz = \left (\frac{\partial x}{\partial r}dr +...
  5. P

    A Is a volume element in relativity represented by a vector?

    Can we say that a volume element can be represented by a vector, or is there some hidden complication that makes this inadvisable? For some background, the stress-energy tensor has been described as the density of energy and momentum, in for instance MTW. So if one says that the represention...
  6. davidge

    I Is the Notation for Coordinate Transformation in Relativity Problematic?

    In a change of coordinate system we have ##dx^\mu = (\partial x^\mu / \partial \xi^{\kappa})d \xi^{\kappa}##, where the term in round brackets is the Jacobian. That notation implies a sum over all values that ##\kappa## can take. This don't tell us that it's an alternating sum for the case of...
  7. Luca_Mantani

    Doubt regarding volume element in Spherical Coordinate

    Homework Statement Hi everyone. Here's my problem. I know that the volume element in spherical coordinate is ##dV=r^2\sin{\theta}drd\theta d\phi##. The problem is that when i have to compute an integral, sometimes is useful to write it like this: $$r^2d(-\cos{\theta})dr d\phi$$ because...
  8. genxium

    How is (d^3)r in Green's Function equivalent to volume element?

    Homework Statement This is part of the online tutorial I'm reading: http://farside.ph.utexas.edu/teaching/em/lectures/node49.html I'm so confused about the notation of Dirac Delta. It's said that 3-dimensional delta function is denoted as \delta^3(x, y, z)=\delta(x)\delta(y)\delta(z) in...
  9. S

    Volume element for null hypersurface

    hi every body Consider we have a null hypersurface. how we can calculate volume element on it?
  10. J

    Area element, volume element and matrix

    I found this matrix in the wiki: https://fr.wikipedia.org/wiki/Vitesse_ar%C3%A9olaire#.C3.89valuation_en_coordonn.C3.A9es_cart.C3.A9siennes I think that it is very interesting because it express d²A not trivially as dxdy. So, I'd like of know if exist a matrix formulation for volume...
  11. pellman

    The invariant momentum-space volume element?

    When we way that \frac{d^3p}{p_0}=\frac{d^3p}{\sqrt{m^2+\vec{p}^2}} is the invariant volume element, is that with respect to all Lorentz transformations or just proper orthochronous Lorentz transformations?
  12. M

    Showing resultant stresses on a volume element

    Me again, (this is what happens when you make a designer do mechanics, and give her a lecturer she doesn't understand :P ). I'm stuck on a combined loadings question. This is the question: "The 60 mm diameter rod (fixed at end C on the wall) is subjected to the loads shown. 1) Transform...
  13. S

    Lorentz Invariant Volume Element

    So, the upper light cone has a Lorentz invariant volume measure dk =\frac{dk_{1}\wedge dk_{2} \wedge dk_{3}}{k_{0}} according to several sources which I have been reading. However, I've never seen this derived, and I was wondering if anyone knew how it was done, or could point me towards...
  14. A

    Normalization problem; volume element to use?

    Hello! Homework Statement I'm revising my quantum mechanics course, but I don't get this normalizing-problem. \psi = N r cos \theta e^{-r/a_0} To begin with, this is how my teacher solves it in the solutions manual: 1=N^2\int_0^\infty r^2 e^{-r/a_0} r^2 dr \int_0^{\pi} \int_0^{2 \pi}...
  15. T

    Infinitesimal volume element in different coordinate system

    I've already post this, but I've done it in the wrong section! So here I go again.. I've a doubt on the way the infinitesimal volume element transfoms when performing a coordinate transformation from x^j to x^{j'} It should change according to dx^1dx^2...dx^n=\frac{\partial...
  16. T

    Volume element in different coordinate system

    Very simple question: Let x^0,x^1,...,x^n be some fixed coordinate system, so that the infinitesimal volume element is dV=dx^0dx^1...dx^n. Then any change to a new (primed) coordinate system x^{0'},x^{1'},...,x^{n'} transforms the volume to dV=\frac{\partial (x^0,x^1,...,x^n)}{\partial...
  17. Y

    Unique volume element in a vector space

    Given two orthonormal bases v_1,v_2,\cdots,v_n and u_1,u_2,\cdots,u_n for a vector space V, we know the following formula holds for an alternating tensor f: f(u_1,u_2,\cdots,u_n)=\det(A)f(v_1,v_2,\cdots,v_n) where A is the orthogonal matrix that changes one orthonormal basis to another...
  18. L

    Understanding the Equality in Equation 2.96: Volume Element as n-Form?

    Hi, I'm reading Sean Carroll's text, ch2, and believe I understood most of the discussion on Integration in section 2.10. However in equation 2.96, he states that \epsilon\equiv\epsilon_{\mu_1\mu_2...\mu_n}dx^{\mu_1}\otimes dx^{\mu_2}\otimes...\otimes dx^{\mu_n}...
  19. M

    Why is the volume element a scalar density of weight -1?

    In Ray d'Inverno's book on general relativity, he defines the volume element in a way which makes it a scalar density of weight -1, meaning it transforms with the inverse of the Jacobian. Every other source I have looked at seems to say it should transform with the Jacobian, making it a scalar...
  20. Fredrik

    Divergence defined from volume element

    I need some help understanding a definition: This is supposed to be an explanation of what the author did on the page before. He had just described how to construct a (complex) Hilbert space from a (real) smooth manifold with a smooth nowhere vanishing volume element, and then moved on to...
  21. C

    Integrating with volume element (d^3)x

    i'm at a loss about how to do this type of integration. can some one show me how to evaluate the integral of (d^3)k exp[ik*(x1-x2)]/[(k^2+m^2)(2pi)^3], where "*" is the dot product between the 3 vector k and (x1-x2), which are both 3 vectors. this come from the energy equation used to get the...
Back
Top