2D Phase portrait - Black hole?

unscientific
Messages
1,728
Reaction score
13

Homework Statement



Trajectories around a black hole can be described by ## \frac{d^2u}{d\theta^2} + u = \alpha \epsilon u^2 ##, where ##u = \frac{1}{r}## and ##\theta## is azimuthal angle.

(a) By using ##v = \frac{du}{d\theta}##, reduce system to 2D and find fixed points and their stability. Find direction of fastest perturbations.
(b) Sketch the phase portrait. Would stability of fixed points differ in the non-linearized version?

Homework Equations

The Attempt at a Solution



Part (a)
The equations now become ##\delta v = \delta \dot u## and ##\delta \dot v + \delta u = 2\epsilon u \delta u##.
2010_B1_Q1.png

Fixed points are ##\left( 0,0 \right)## and ##\left( \frac{1}{\epsilon}, 0 \right)##. At ##(0,0)##, all eigenvalues are imaginary, so the fixed point is a center. At ##(\frac{1}{\epsilon},0)##, eigenvalues are ##\pm 1## so fixed point is a saddle.
Eigenvalue of ##J + J^T## is ##2\epsilon u## and direction of fastest perturbation is ##u=v##.

Part(b)
Eigenvalue in general is ##\lambda^2 = (2\epsilon u - 1)##, so for ##|u| > \frac{1}{2\epsilon}##, the particle doesn't get trapped by the black hole?

2010_B1_Q1_2.png

 
Physics news on Phys.org
bumpp
 
bumpp
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top