About the constraint equations of a pulley

AI Thread Summary
The discussion centers on the relationship between the displacements of two masses, A and B, in a pulley system, specifically questioning the validity of the equation S(A)=2S(B). One participant expresses confusion over this equation, citing the integration of velocities and the introduction of an unknown constant. Another clarifies that the boundary condition when V(A)=0 implies V(B)=0, negating the concern about the extra constant. The mechanical advantage of the pulley system is highlighted, emphasizing that while force is gained, displacement is reduced. Overall, the accuracy of the established relations among the variables is debated, with a consensus on the constancy of the total rope length.
nish95
Messages
12
Reaction score
0
Homework Statement
See the solved example as shown in the image. I don't understand how can we write S(A)=2S(B) since integrating V(A)=2V(B) will give us an extra unknown constant and the work done by friction will depend on it.
Relevant Equations
Work-Energy theorem & constraint equations.
See the solved example as shown in the image. I don't understand how can we write S(A)=2S(B) since integrating V(A)=2V(B) will give us an extra unknown constant and the work done by friction will depend on it. I found the relation 2S(B) + S(A) = const. (somebody confirm if this is right?) so isn't it technically wrong to say that S(A)=2S(B)?
pulley problem.png

New Doc 2020-03-06 00.15.00_1.jpg
 

Attachments

  • pulley problem.png
    pulley problem.png
    55.5 KB · Views: 358
Last edited by a moderator:
Physics news on Phys.org
##S_A## and ##S_B## are displacements of the masses. ##x_1## and ##x_4## are positions of the masses.
In particular, ##S_A = -\Delta x_4## and ##S_B = \Delta x_1##.

From your equation ##2x_1+x_4 = \rm const##, derive a relation between ##\Delta x_1## and ##\Delta x_4##.
 
"I don't understand how can we write S(A)=2S(B) since integrating V(A)=2V(B) will give us an extra unknown constant "
No it won't. You have an obvious boundary condition that , when V(A)=0 , then V(B)=0.
 
@TSny, thank you very much for clarifying!
 
nish95 said:
I don't understand how can we write S(A)=2S(B)
The pulley to which mass B is attached, works as a lever.
Imagine the fulcrum of that lever located at the point where the right-hand vertical section of rope meets the pulley, the left-hand section of vertical rope lifting the weight B, which is located exactly midway between those two vertical sections of rope.
The mechanical advantage of such lever is 2.
The old "golden rule" of mechanics states that whatever you gain in force you lose in displacement.

Please, see:
http://www.technologystudent.com/gears1/pulley9.htm

https://en.wikipedia.org/wiki/Mechanical_advantage#Block_and_tackle

https://en.wikipedia.org/wiki/Simple_machine#Ideal_simple_machine

I believe that the relations you have established among the different Xs are incorrect, except the one that shows that the total length of the rope ##(X_2+X_3+X_4)## remains constant.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top