Advice on pressure drop calculation

AI Thread Summary
To calculate the pressure drop in a stainless steel pipe with a supply pressure of 45 barg, a length of 80 meters, and an inner diameter of 8mm, one must consider several factors including the 20 bends in the pipe and the flow of pure nitrogen gas at 50 liters/min. The Moody Chart is essential for determining the friction factor, which requires calculating the relative roughness, nitrogen viscosity, and Reynolds number. The equivalent length of the bends should be added to the actual pipe length for accurate pressure drop calculations. If the pressure drop exceeds 10% of the inlet pressure, the pipe should be divided into segments for more precise calculations. The density of nitrogen will vary, necessitating adjustments in calculations based on the compressible nature of the gas.
DarkoX
Messages
1
Reaction score
0
TL;DR Summary
I am desperately need an advise/help on the calculation of pressure drop across the pipe.
Hello everyone,

I would appreciate any help with my task I am struggling to resolve. I need to calculate or simulate pressure drop when got the following parameters:

1. Supply pressure: 45barg.
2. Pipe Length: 80 meters
3. Pipe diameter: OD - 10mm, ID - 8mm.
4. Pipe material: stainless steel (SS316).
5. Pipe has 20 90deg bends distributed evenly across the pipe length.
6. Flow: well, it is bit more complicated as flow measured at 50 litres/min however after pressure is reduced from 45barg to 3.5barg (after pressure regulator).
7. Media: Pure N2 (nitrogen) gas.

How hard to calculate/simulate pressure drop across this pipe? Anyone can help me on this?

Much appreciated.
 
Engineering news on Phys.org
The Moody Chart (search the term) has everything you need to calculate the pressure drop. The chart in Wikipedia is a good one. You will need to do some calculations. Start as follows:

1) Calculate the relative roughness. If your pipe is drawn tubing, that would be 0.0025 / 8 = 3E-4.

2) Find the nitrogen viscosity. Here is a good source: https://www.engineeringtoolbox.com/air-absolute-kinematic-viscosity-d_601.html.

3) Calculate the Reynolds number. You will need to calculate or find the density, velocity, and viscosity of the nitrogen as it is flowing through the pipe. All of the inputs to the Reynolds number must be in consistent units so that the units will cancel. A properly calculated Reynolds number is dimensionless, and you need to confirm that the units cancel in order to verify your calculation.

4) Now that you have the Reynolds number and relative roughness, find the friction factor from the Moody chart. A screen shot of the Wikipedia Moody chart is shown below.

5) Find the equivalent length of one of the pipe 90 degree bends. Add to the actual length of the pipe, and use that total (actual plus equivalent) length for all pressure drop calculations. Use search term equivalent length pipe bend.

6) Use the equation on the Moody chart to find the pressure drop. If the pressure drop is less than about 10% of the inlet absolute pressure, you are done. If the pressure drop is greater than 10% (10% of 45 barg is 4.5 barg), divide the pipe into several lengths. Calculate the pressure at the end of the first length, use that as the input to the second length, etc.

Moody Chart:
Moody Chart.jpg


You may be able find an online calculator, but it is a very good idea to verify by doing the calculation above.
 
  • Like
Likes BvU and Lnewqban
jrmichler said:
The Moody Chart (search the term) has everything you need to calculate the pressure drop. The chart in Wikipedia is a good one. You will need to do some calculations. Start as follows:

1) Calculate the relative roughness. If your pipe is drawn tubing, that would be 0.0025 / 8 = 3E-4.

2) Find the nitrogen viscosity. Here is a good source: https://www.engineeringtoolbox.com/air-absolute-kinematic-viscosity-d_601.html.

3) Calculate the Reynolds number. You will need to calculate or find the density, velocity, and viscosity of the nitrogen as it is flowing through the pipe. All of the inputs to the Reynolds number must be in consistent units so that the units will cancel. A properly calculated Reynolds number is dimensionless, and you need to confirm that the units cancel in order to verify your calculation.

4) Now that you have the Reynolds number and relative roughness, find the friction factor from the Moody chart. A screen shot of the Wikipedia Moody chart is shown below.

5) Find the equivalent length of one of the pipe 90 degree bends. Add to the actual length of the pipe, and use that total (actual plus equivalent) length for all pressure drop calculations. Use search term equivalent length pipe bend.

6) Use the equation on the Moody chart to find the pressure drop. If the pressure drop is less than about 10% of the inlet absolute pressure, you are done. If the pressure drop is greater than 10% (10% of 45 barg is 4.5 barg), divide the pipe into several lengths. Calculate the pressure at the end of the first length, use that as the input to the second length, etc.

Moody Chart:
View attachment 285474

You may be able find an online calculator, but it is a very good idea to verify by doing the calculation above.
One more thing. With N2 gas, the density will be changing. So we have $$\frac{dp}{dx}=-\frac{\rho v^2}{2d}f=-\frac{(\rho v)^2}{2\rho d}f=-(Re)^2\frac{\mu^2}{2\rho d^3}f$$with $$Re=\frac{4m}{\pi d \mu}$$where m is the mass flow rate. In addition, we have $$\rho=\frac{pM}{RT}$$This leads to $$\frac{dp^2}{dx}=-(Re)^2\left(\frac{RT}{M}\right)\frac{\mu^2}{d^3}f$$So, for a compressible ideal gas, we are working with the square of the pressure, rather than the pressure to the first power.
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top