Angled beam support reaction loads

AI Thread Summary
To determine support reaction loads on a beam at an angle, it's essential to take moments about each end of the beam, ensuring the net moment equals zero for rotational equilibrium. The chains are vertical, simplifying the calculations, as the tension can be calculated using the formula Moment = Force x perpendicular distance. A clear diagram is crucial for visualizing the geometry of the problem. For a beam with a uniform load distribution, the total weight can be calculated and treated as acting through the center. Utilizing these principles will help in accurately finding the support reaction loads.
Rigga81
Messages
2
Reaction score
0
Hi,
Im trying to find the method for working out the support reaction loads on a beam at given angle.
example: a 6m beam with a point load 600kg or UDl of 100kg/m perpendicular to the beam. Suspended at each end by a chain hoist, "a" and "b". "b" is 2m higher than "a". I believe using angle is the key but I can't find many examples I understand to check my results against.

Thanks

James
 
Engineering news on Phys.org
Rigga81 said:
Hi,
Im trying to find the method for working out the support reaction loads on a beam at given angle.
example: a 6m beam with a point load 600kg or UDl of 100kg/m perpendicular to the beam. Suspended at each end by a chain hoist, "a" and "b". "b" is 2m higher than "a". I believe using angle is the key but I can't find many examples I understand to check my results against.

Thanks

James

Yes, the angle will be very helpful here in determining certain angles. So I believe this will require us to take moments (don't see much point in resolving as there aren't many unknowns...). Have you tried taking moments about each end of the beam, knowing that the net moment = 0? If you do that, you should be able to find the tensions.

Are the chains vertical? I have written my response assuming that they are? It becomes a bit more tricky if they aren't, but then you can use 3 coplanar forces ideas...
 
Hi, Thanks for you reply. Yes in this instance the chains are vertical. Could you explain further how you would solve this please?
 
Rigga81 said:
Hi, Thanks for you reply. Yes in this instance the chains are vertical. Could you explain further how you would solve this please?

Most important thing when doing moment questions is to draw a nice, clear, and big diagram so you can familiarise yourself with the geometry of the problem.

We also know that Moment = Force x perpendicular distance to pivot from line of action:
\textbf{Moment} = \textbf{r} \times \textbf{F}

If we are comfortable with this idea, then there is no need for us to use the angles... If you are not clear about taking moments, I would go and look at some videos on youtube as there are many sources out there.

Taking moments about A (the lower end) couter-clockwise, we know that the net moment is equal to 0 in order for the beam to be in rotational equilibrium:
0 = T_{b}(4\sqrt2) - W(\frac{4\sqrt2}{2})

We can calculate W from the problem: if beam has uniform distribution of mass of 100 kg/m, then the total mass of 6m of the beam is... (and we can treat this as acting through the center of the beam as it is uniform distribution of mass)

Then: we can do the same thing for Ta or we can resolve vertically and simply solve from there for Ta

Hope that is of some help.
 
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Back
Top