Angular momentum operator for 2-D harmonic oscillator

Rabindranath
Messages
10
Reaction score
1
1. The problem statement

I want to write the angular momentum operator ##L## for a 2-dimensional harmonic oscillator, in terms of its ladder operators, ##a_x##, ##a_y##, ##a_x^\dagger## & ##a_y^\dagger##, and then prove that this commutes with its Hamiltonian.

The Attempt at a Solution



I get

##L = (x + y) × (p_x + p_y) = -i \hbar ((a_x^\dagger +a_y^\dagger) × (a_x + a_y) + a_x × a_x + a_y × a_y)##.

Does this seem to make any sense?

As for the commutator, with Hamiltonian ##H = \hbar \omega (a_x^\dagger a_x + a_y^\dagger a_y + 1) ##, I consequently get all sorts of exotic product terms, e.g.

## \left ( (a_x^\dagger +a_y^\dagger) × (a_x + a_y) \right ) a_x^\dagger a_x ##

and the like, and I'm not comfortable with handling these. I want all of them to go away, for said operators to commute, but am not sure how to do/see that.

Any comments would be appreciated.
 
Physics news on Phys.org
You should rather show that the operator ##L^2##, which is the same as ##L_{z}^{2}## for motion on the xy-plane, commutes with the Hamiltonian. This actually happens only when the "spring constants" are the same in x and y directions and the potential energy ##V(r,\theta )## depends only on the radial coordinate ##r##.
 
You can first work out the commutator of Lz with the Hamiltonian. In your attempt, the way you wrote L is wrong. You should work out the cross product of the position vector and the momentum vector.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top