Angular Velocity and Acceleration

AI Thread Summary
To find the angular acceleration of a bike wheel that stops after rotating 9.4 times from an initial angular velocity of 8.1 rad/s, the relevant equations for uniformly decelerated angular motion must be applied. The total angle in radians is calculated as 9.4 revolutions multiplied by 2π. Using the equation θ = ω₀t + 0.5αt², two equations can be established to solve for angular acceleration (α) and time (t). The initial angular position (θ₀) is not needed since the difference in angles provides sufficient information. By substituting known values into the equations, the problem can be solved systematically.
df102015
Messages
27
Reaction score
1

Homework Statement


If a bike wheel rotates 9.4 times while slowing down to a stop from an initial angular velocity of 8.1 rad/s, what is the magnitude of the angular acceleration in rad/s/s

Homework Equations


α = at / r
α = ω / t
α = Θ / t^2
ω = Θ / t
ω = v / r
Θ = ω t + 0.5 α t^2
v final = v initial + at → ω final = ω initial + αt
some of these formulas may be useless, and there possibly are some others not mentioned that i do not know :/

The Attempt at a Solution


Knowing the initial angular velocity is 8.1 and the final is 0 since the wheel stops, i used
ω final = ω initial + αt
0 = 8.1 + αt
it spins 9.4 times in the time frame during which it slows down, but the radius of the wheel is not given. And i do not know which ω to use in the equation ω = Θ / t in order to find time. If i could get time, then i could use the equation α = ω / t or α = Θ / t^2. Am i even approaching this correctly? if not can somebody point me in the right direction?
 
Physics news on Phys.org
Hi,

There is another SUVAT equation you need to translate into uniformly decelerated angular motion: ##s = s_0 + v_0 t + {1\over 2} at^2##.

##\theta## takes the place of s (and one revolution is ##2\pi##) to give you a second equation. That way you have 2 eqns for ##\alpha## and ##t##, so you should be able to solve.
 
BvU said:
Hi,

There is another SUVAT equation you need to translate into uniformly decelerated angular motion: ##s = s_0 + v_0 t + {1\over 2} at^2##.

##\theta## takes the place of s (and one revolution is ##2\pi##) to give you a second equation. That way you have 2 eqns for ##\alpha## and ##t##, so you should be able to solve.
i am still confused as to what two equations these are, if you could provide them for me or hint at what they would be i would greatly appreciate it. I am unsure of what s0 would be, i understand that theta substitutes for s, but it couldn't be for both sides. Is 2pi x 9.4 supposed to be s?
 
$$\theta(t) = \theta_0 + \omega_0 t + {1\over 2} \alpha t^2 $$ it's that simple (for constant angular acceleration/deceleration -- then ##\alpha < 0##).

You don't know ##\theta(t)## and ##\theta_0## but you do know their difference (indeed, the angle you mention).
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top