Application of derivatives problem?

Click For Summary
SUMMARY

The forum discussion centers on a problem involving the application of derivatives to calculate the time it takes for a salmon to swim upstream against a current. The energy equation provided is Energy = kdv^5/(v − v0), where v0 is the current speed (2 mph) and d is the distance (20 miles). Participants emphasize the importance of correctly interpreting the equation and finding the critical value of v to minimize calorie expenditure. The solution involves deriving the time function t = d/(v − v0) and using calculus to determine the optimal swimming speed.

PREREQUISITES
  • Understanding of derivatives and critical points
  • Familiarity with algebraic manipulation of equations
  • Knowledge of optimization techniques in calculus
  • Basic understanding of energy equations in biological contexts
NEXT STEPS
  • Study the application of derivatives in optimization problems
  • Learn how to find critical points in functions
  • Explore energy equations in biological systems
  • Practice solving real-world problems involving rates and time
USEFUL FOR

Students in biology and mathematics, particularly those studying calculus and its applications in biological contexts, as well as educators looking for examples of optimization problems.

mirs
Messages
18
Reaction score
0

Homework Statement



A biologist determines experimentally that the number of calories burned by a salmon swimming a distance d in miles upstream against a current v0 in miles per hour is given by

Energy = kdv^5/v − v0

where v is the salmon’s swimming speed relative to the water it is in. This means that the salmon’s progress upstream is at the rate of v − v0 miles per hour, so that the distance d is covered in a time of

t=d/v − v0

If v0 = 2 mph and d = 20 miles, and the salmon, being smart, swims so as to minimize the calories burned, how many hours will it take to complete the journey?

Homework Equations



Requires derivatives

The Attempt at a Solution



I really just don't understand where to start. I subbed t into the equation and ended up with ktv^5/v-v0, took the derivative of that with respect to t and got 5kv^4 but I have no idea what I really don't know where to go from there.
 
Physics news on Phys.org
mirs said:

Homework Statement



A biologist determines experimentally that the number of calories burned by a salmon swimming a distance d in miles upstream against a current v0 in miles per hour is given by

Energy = kdv^5/v − v0

Do you mean ##\frac{kdv^5} v - v_0##, which is what you wrote, or ##\frac{kdv^5}{v − v0}##?

where v is the salmon’s swimming speed relative to the water it is in. This means that the salmon’s progress upstream is at the rate of v − v0 miles per hour, so that the distance d is covered in a time of

t=d/v − v0

Same problem here. Obviously you mean ##\frac d {v-v_0}##. Use parentheses!
If v0 = 2 mph and d = 20 miles, and the salmon, being smart, swims so as to minimize the calories burned, how many hours will it take to complete the journey?

Homework Equations



Requires derivatives

The Attempt at a Solution



I really just don't understand where to start. I subbed t into the equation and ended up with ktv^5/v-v0, took the derivative of that with respect to t and got 5kv^4 but I have no idea what I really don't know where to go from there.

Try finding the critial value of ##v## using the energy equation. Then use that to get the time of travel.
 
Yes! I meant (kdv^5)/(v−v0).
 
LCKurtz said:
Try finding the critial value of ##v## using the energy equation. Then use that to get the time of travel.

OK, so I'm guessing I don't plug t into the energy equation in the first place? because I did that and found the derivative to be 5ktv^4
 
LCKurtz said:
Try finding the critial value of ##v## using the energy equation. Then use that to get the time of travel.

mirs said:
OK, so I'm guessing I don't plug t into the energy equation in the first place? because I did that and found the derivative to be 5ktv^4

Why are you guessing? Why not just try what I suggested?
 

Similar threads

Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
1K