Approximating Glucose as an Ideal Gas: Can We Calculate Entropy?

AI Thread Summary
The discussion centers on the approximation of glucose dynamics in water as resembling an ideal gas, raising the question of whether entropy can be calculated using ideal gas equations. Participants express uncertainty about the specifics of calculating entropy and seek clarification on determining a lower bound for overall entropy change. One user indicates they have made progress on earlier tasks but are still confused about task four. The conversation highlights the need for further guidance on the calculations involved. Overall, the forum participants are collaboratively seeking solutions to the entropy calculation challenge.
Lambda96
Messages
233
Reaction score
77
Homework Statement
Estimate the entropy of the glucose molecules (and only those) in
the initial state before the creation of the cell. Hint: You can approximate that their dynamics in water resembles that of an ideal gas.
Relevant Equations
No specific formulas were given
Bildschirmfoto 2022-11-11 um 14.07.42.png


For now it is only about the 1 task

If the task states that:

You can approximate that their dynamics in water resembles that of an ideal gas.
Does it then mean that I can take glucose as the ideal gas and then simply calculate the entropy for the ideal gas?
 
Physics news on Phys.org
Lambda96 said:
If the task states that:

You can approximate that their dynamics in water resembles that of an ideal gas.
Does it then mean that I can take glucose as the ideal gas and then simply calculate the entropy for the ideal gas?
Sorry you haven't had any replies. I am mostly unfamiliar with this topic, but the way the question is worded makes me think that you're on the right track. Best of luck.
 
Thanks Drakkith for getting in touch. I think task 1 to 3 I have now solved, I'm just a little unsure about the task 4, what exactly is meant by "Determine a lower bound for the overall entropy change"

Does anyone maybe have a tip for me, what I have to calculate exactly here?

Thanks
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top