- 8

- 0

**1. Homework Statement**

The question involves a bullet weighing 0.04 kg and traveling at 360 m/s being fired at a pendulum ball (weighing 1.0 kg) with which it becomes lodged and the string (which is 2 m long) thereafter breaks at 45 degrees to the ground. The ball then acts with projectile motion traveling initially at 45 degrees and lands some distance away. What is the total horizontal distance traveled?

**2. Homework Equations**

KE= .5*m*v^2

PE= m*g*h

*conservation of energy*

Kinematic Equations

**3. The Attempt at a Solution**

I would be able to find the range that the ball travels after the string breaks away but I am unable to find a value for the velocity of the ball at this point as well as at what height the ball would be at 45 degrees. I am thinking that it would just be 1 m (since at 90 degrees it would be 2 m above the ground) but I am very confused about where to go. I know that using the conservation of mass I can use the initial speed of the bullet and the weight of the bullet along with the weight of the ball [ m1v1 = m2v2 ] to find the velocity to be 13.85 m/s but how does that velocity change at 45 degrees, how far does the ball travel horizontally in that period and at what height above the ground is the ball when the string breaks (at 45 degrees)? After this could be cleared up for me a bit I would be able to attempt this problem much easier. I am tutoring a fellow student in this class tomorrow and this problem is due when after the weekend so your help would be much appreciated

**1. Homework Statement**

**2. Homework Equations**

**3. The Attempt at a Solution**