Basic Thermodynamics: Gas expansion against a vacuum

irate_turtles
Messages
2
Reaction score
0

Homework Statement


Okay, so the problem given is that there is a rigid tank with a partition down the middle. For partition A, the specific volume, the temperature, and therefore the pressure is known. The mass, or total volume is not known.
Partition B is a vacuum for which the total volume is known.

Temp A = 300 degrees C
Pressure A = 200 kPa
Specific Volume A = 1.31623 m^3/kg

Volume B = 0.2 m^3

Then the partition is removed, and heat is added to the final system so that it remains at a constant pressure. The gas can be modeled as ideal.

Homework Equations


Pv = RT
PV = mRT
du = Cv*dT
dh = Cp*dT

The Attempt at a Solution



My problem is that I don't see how to find any intensive properties for the final system, because partition A is all in intensive properties, and partition B is defined by extensive properties... I can't think of any approach to this problem. I understand that the work done is zero, because it is an ideal gas expanding against a vacuum. I'm currently trying to understand the process as two parts, a gas expanding into a vacuum doing no work, with temperature constant, and volume increasing while pressure decreases. Then heat is added to increase the pressure back to the original value, increasing the temperature as well. But without knowing the relative sizes of the partitions, or the total mass involved for this process, how can the final temperature of the equilibrated system be found??
 
Physics news on Phys.org
First find R for this gas using the pre-expansion data. Then use that value for R in determining the final temperature after expansion.

AM
 
Can you explain a little bit more?

Since P is known for the final state, and R is known, but neither V, v, or T is known, how would you solve for Temperature in PV = mRT or Pv = RT?


Thank you for the reply.
 
irate_turtles said:
Can you explain a little bit more?

Since P is known for the final state, and R is known, but neither V, v, or T is known, how would you solve for Temperature in PV = mRT or Pv = RT?
You also know how the original volume is related to the final volume. (hint: the partition is down the middle).

AM
 
If the partition is "down the middle", then volume B IS known, so we have a contradiction in the problem's stating.

Anyway: what exactly are you supposed to determine?
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top