I presume no-one is deflecting any actual cantilevers?
Hi again vidar,
After reading the responses by Gokul and Aleph0, I feel I should ask: why do you want to know? I hope you're just playing around, not trying to design a home-made diving board or anything like that!
Gokul43201 said:
You may want to use an FEM package like Ansys for this...but that's probably taking the bazooka on your fly-swatting expedition. There are very likely simpler scripts out there that are good for beam deflection problems with simple (i.e., uniform cross-section) beams (I've used one called "Beam" - it ran on DOS - that doesn't seem to exist any longer).
Did you overlook the bit about "large deflections"?
I sure hope people don't assume they can grab any old thing off the internet and use it to design their own home or whatever!
AlephZero said:
Not necessarily. For many "nonlinear" problems the strains (and stresses) are in the elastic range but the geometry becomes nonlinear because of large rotations. An extreme example is a clock or watch spring which can wind and unwind through several complete rotations, but the material's stress-strain relationship is completely linear.
I think you may have misread something I wrote.
I was talking about beam deflection. In the thread I cited, I gave bibliographic information for a half dozen textbooks which discuss such problems; several authors offer some approximate guidance on deflections too large to be reliably modeled by the "analytic theory" in such textbooks. A fundamental point concerning the analysis of beams found in such well known textbooks as Timoshenko and Goodier,
Theory of Elasticity is that this analysis ignores the distinction between Lagrange and Euler coordinates (see Sokolnikoff,
Mathematical Theory of Elasticity), which is not valid for beams subjected to large deflections for geometric reasons.
I should have mentioned that the term "linear elasticity" is potentially misleading. The "linearity" in this term refers to the standard definition of the
strain tensor, in which we consider only first order terms. This enormously simplifies the theory. The "theory of beams" which ME students are taught in engineering schools (based on standard physics textbooks by Landau & Lifschitz, Sokolnikoff, etc.) assumes small deflections in this sense; the most fundamental definitions are invalid without this assumption.
In the case of beams, unfortunately, it is the net deflection at the free end which can cause trouble, because of the misalignment of Lagrange and Eulerian descriptions of the "deformed" shape of the beam wrt the "undeformed" shape. Specifically, in the classical treatment of a deformed cantilever, the putative "gravitational acceleration vector" will not wind up pointing in the right direction at the free end. This error can be ignored only if the net deflection is small. This problem was brought out very clearly (as I thought) in the thread I cited.
It is true that the equations of continuum mechanics, which ultimately underlie this theory, are nonlinear, but this doesn't contradict what I just said. "Nonlinear elasticity" doesn't refer to introducing new nonlinear terms in the Euler beam equation or anything like that, but rather to adopting a notion of strain which includes "higher order terms". This leads to nontrivial conceptual and technical difficulties. In principal one could try to apply nonlinear elasticity to devise a workable theory of beams, but I haven't seen that done, and given the complexity of even the linear theory, I tend to think most MEs would better invest time in mastering linear elasticity plus finite element methods.
AlephZero said:
You might find some closed-form solutions by searching for "elastica" which was the old name for this type of problem - though in Google you now have to filter out a few million references to a pop group with the same name.
As I mentioned in the thread I cited, the theory of "elastica" is due to Jakob Bernolli 1705, but the much improved version found in (some) modern textbooks is due to Euler 1744. This theory is concerned with the
shape assumed by a bent thin rod and is
not valid for thin plates or for cantilevers (unless the beam is essentially a thin rod); see Landau and Lifschitz, section 14.
The linear theory of elasticity was not created until the nineteenth century, with essential pieces not in place until rather late in that century. The classical theory of beams (including distribution of stresses and strains) belongs to this theory, which implicitly assumes small deflections.
Physicists began to study the foundations of nonlinear elasticity in the second half of the twentieth century, and there are now various competing formalisms. I think it is fair to say that none of them appears to be anywhere near as workable as the linear theory for making crude but reliable estimates of the kind useful for engineers.
AlephZero said:
In practical engineering this would be done with a finite element model. Look for a program that can handle "large displacement, small strain" problems, and "follower forces" where the geometry of the loading changes as the shape of the structure deforms. Any "big ticket" program like Ansys, Abaqus, Nastran, etc can do it - but if you select the wrong options, you will get the wrong answers of course.
That's precisely why I am just a bit worried about what the OP has in mind.