Best books for learning differential forms?

AI Thread Summary
For learning differential forms with a calculus background similar to Spivak's, several textbooks are recommended. Spivak's "Calculus on Manifolds" is a popular choice, though it is brief. Edwards' "Advanced Calculus of Several Variables" is suggested as a more accessible alternative. For a deeper understanding of differential forms in general manifolds, John Lee's and do Carmo's texts are highly regarded, along with Lang's and Abraham/Marsden's books. The discussion highlights the importance of the reader's goals, noting that some books focus more on analytical aspects while others emphasize topology. A distinction is made between two authors named Edwards, clarifying their different approaches to advanced calculus. Additionally, Spivak's "A Comprehensive Introduction to Differential Geometry" is mentioned as a follow-up after "Calculus on Manifolds." Overall, the conversation emphasizes the variety of resources available, catering to different learning preferences and levels of rigor.
inknit
Messages
58
Reaction score
0
Can someone recommend a good textbook for learning differential forms for someone with an understanding of calculus at the level of Spivak?

Thanks.
 
Physics news on Phys.org
The obvious choice would be Spivak's Calculus on Manifolds. Since it's rather brief, a "decompressed" alternative that I also recommend is Edwards' Advanced Calculus of Several Variables (a Dover, so it's cheap).
 
How about Cartan's differential forms?
Other than calling manifold "variety", I heard this is good book.

Actually, it depends on how much you want to learn differential forms.
If you just want to learn differential forms living in R^n, spivak is perfect.
If you want to learn differential forms in general manifolds,
read Lee, doCarmo, Lang, Abraham/Marsden's manifolds book
(not Foundations of Mechanics).

(Lols to translator for not noticing that English-speaking people use the term manifolds instead of variety)
(variety is okay to stick in algebraic geometry, becuase that's the universal term
that mathematician uses)
 
The books mentioned here are very good recommendations and are some of my favorites. However, they are quite theoretical and perhaps you do not want that.
Here is a good book that is perhaps less theoretical but does contain some good stuff: https://www.amazon.com/dp/0127425101/?tag=pfamazon01-20
 
Last edited by a moderator:
Last edited by a moderator:
Thanks for the suggestions. I'm trying to learn differential forms in preparation for a differential topology class that uses Pollack. I think I'll go with Spivak's Calc on Manifolds.
 
Spivak is the way to go (maybe not for first learning), but you won't regret that you bought it.

One thing to mention is that Gullemin/Pollack is more concerned with topological aspects of smooth manifolds rather analytical aspects.

After Spivak (for smooth manifolds books focusing on analytical aspects):
-For nice but slow spoonfeeding intro, read John Lee (still good to get it because you won't have too much headache and nevertheless this will be your standard textbook).
-More physical but still rigorous intro would be Abraham/Marsden's Manifolds book.
-Hardcore treatment would be Lang
 
Would Spivak's Caclulus book prepare one for the exercises in his Calculus on Manifolds?

I think the other books mentioned assume less knowledge of topology and analysis.

Also, just in case it's not clear, there are two advanced calculus books by different Edwards, Advanced Calculus: A Differential Forms Approach by Harold M. Edwards and Advanced Calculus of Several Variables by C. Henry Edwards. Henry doesn't cover differential forms until about chapter 5, while Harold starts right off with them.
 
  • #10
For Calculus on Manifolds, I would say the necessary and sufficient prerequisite knowledge is his Calculus as well as linear algebra and some familiarity with metric spaces. To add to what chhan92 said, after Calculus on Manifolds you may want to look at Spivak's A Comprehensive Introduction to Differential Geometry Vol. 1.
 
  • #11
Oh I completely forgot about it.

It is rival of John Lee, but has distinctive pros & cons relatively
(meaning that both books are somewhat masterpiece)

John Lee:
-pros: Relatively easy to learn despite being in GTM (reads like UTM), nice set of examples to work through, topological aspects are not too shallow (he uses smooth covering maps), one of the best book for Lie groups (except books specializing in Lie groups of course)
-cons: too slow in some sense, not a good reference, relatively not too good to give good insights

Spivak Vol 1:
-pros: Nice insights (just like all of his books! (except little spivak, but oh well you need to deduce it!)), Master of exercises!
-cons (not my opinion, but amazon people's): relatively outdated in terms of teaching

I have John Lee, but maybe some day I should get Spivak Volume 1
 
  • #12
You will still want to read spivak afterwards, but a good first book is:
A geometric approach to differential forms
It explains in much greater detail (but less rigorously) the concepts of differential forms than Spivak/Munkres. I love Spivak's writing, but calculus on manifolds as a first exposure to the material made absolutely no sense to me (I'm referring to chapters 4 and 5. I had no qualms with Chapters 1-3).
 
  • #13
If you are referring to the book on differential topology by guillemin and pollack, there is no prerequisite of differential forms for reading that book. In fact chapter 4 of that book contains an elementary introduction to forms similar to that in spivak's calculus on manifolds.

still, all these recommendations of other sources seem excellent. I myself would probably read cartan, and i agree bachmann's book succeeds at giving a geometric feel for forms. As one amazon reviewer points out, chapter 7 of arnol'd's mathematical methods of classical mechanics seems to be a precursor of bachmann's book, so arnol'd might merit a look as well.
 
Last edited:

Similar threads

Replies
14
Views
1K
Replies
6
Views
2K
Replies
14
Views
4K
Replies
0
Views
2K
Replies
11
Views
3K
Replies
5
Views
4K
Replies
7
Views
7K
Back
Top