Cal 2 ratio test where is my mistake

Jac8897
Messages
25
Reaction score
0
cal 2 ratio test "where is my mistake"

Homework Statement


I attached a pic
I solved the problem but i get 4^1 and the book says 4^2 I don't know why?

Homework Equations



http://img690.imageshack.us/img690/1518/problem15.jpg

The Attempt at a Solution

 
Last edited by a moderator:
Physics news on Phys.org


when you sub in for n -> n+1 in exponent of the 4 it should be

\frac{4^{(2n+1)}}{4^{(2(n+1)+1)}}
 


lanedance said:
when you sub in for n -> n+1 in exponent of the 4 it should be

\frac{4^{(2n+1)}}{4^{(2(n+1)+1)}}

got it

thank you
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top