Calculate electric field at origin, with 3 charges

AI Thread Summary
To calculate the electric field at the origin due to three charges, the magnitudes and distances of the charges must be determined first. The electric field contributions from each charge are calculated using the formula E = kq/r², with k being the electrostatic constant. The direction of the electric field vectors is influenced by the sign of each charge, where positive charges create outward fields and negative charges create inward fields. The resultant electric field is found by vectorially adding the contributions, considering both magnitude and direction. Understanding the vector nature of electric fields is crucial for accurately determining the net electric field at a point.
adca14
Messages
11
Reaction score
0

Homework Statement


Three charges, +2.5\muC, -4.8\muC & -6.3\muC
are located at (-0.20m, 0.15m), (0.50m, -0.35m) and (-0.42m, -0.32m) respectively. What is the electric field at the origin?
q1 = +2.5\muC
q2 = -4.8\muC
q3 = -6.3\muC

Homework Equations


a^{}2 + b^{}2 = c^{}2
v_{}x = magnitude \timescos(\theta)
v_{}y = magnitude \timessin(\theta)
E = \frac{kq}{r^{}2}
law of cosines
k= 9x10^9

The Attempt at a Solution


first i found the hypotenuse for the three charges.
q1 = .25m
q2 = .6103m
q3 = .5280m

then i used the formula for magnitude of an electric field
where k is the constant, q was my three charges, and the radius were my three hypotenuses
my results were:
q1 = 360000
q2 = 115983
q3 = 203383

i used the law of cosines to get \theta
my three angles were:
1 = 36.8
2 = 35
3 = 37.3

to find Ex, i multiplied the product of my magnitudes by the cosine of its respective angle:
my results:
1 = 288263
2 = 95007
3 = 161785
i added these up and got 545055, the book says 2.2x10^5!
i didnt bother doing y, since I am completely lost!
Please help me!
 
Physics news on Phys.org
Doesn't the direction of q3 carry a negative sign ... i.e. pointing toward the right from the origin?

Hence |E1| + |E2| - |E3| along x?

288 + 95 - 161 = 222
 
yeah q3 has a negative sign.
So is the way i did the problem correct?
 
I got another problem I am trying to solve for y, but when i add everything up i get + 443958, not -4.1x10^5 like the book says.

P.S. how do i know which ones to add, and which ones to subtract?
 
adca14 said:
I got another problem I am trying to solve for y, but when i add everything up i get + 443958, not -4.1x10^5 like the book says.

P.S. how do i know which ones to add, and which ones to subtract?

Remember the E-Field is a vector field.

So you not only need to account for the sign of the charge, but you also must take into account where the point that you are taking the E-Field at is relative to the charge.

A positive charge has radial outward field. A negative charge is radial inward. So depending on which side you are and whether it is a + or - is what determines the sign of the |E|, not simply which quadrant it may lay in.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top