Calculating Adiabatic Cooling at 1000 Meters Using Atmospheric Law

  • Thread starter Thread starter EzequielSeattle
  • Start date Start date
  • Tags Tags
    Adiabatic Cooling
AI Thread Summary
A pocket of air rising 1000 meters cools due to adiabatic processes, with the pressure at that altitude calculated to be 90202 Pa or approximately 0.89 atm. The user initially assumed a volume of 1 m³ and used γ=(5/7), leading to incorrect results indicating heating instead of cooling. Upon clarification, it was confirmed that γ should be the ratio of Cp/Cv, which is 7/5 for diatomic gases. Correcting this value resolved the issue, allowing for accurate calculations of cooling. Understanding the correct value of γ is crucial for applying adiabatic equations effectively.
EzequielSeattle
Messages
25
Reaction score
0

Homework Statement


A pocket of air rises 1000 meters. Estimate how much it cools. Use the atmospheric law to determine pressure at 1000 meters.

Homework Equations


P = P0 * e-Mgz/RT
PVγ = constant
TVγ-1 = constant

The Attempt at a Solution


Using the atmospheric law, I found the pressure at 1000 meters to be 90202 Pa, or about 0.89 atm. I'm not sure how to use the adiabatic equations. I just assumed V1 was 1 m3, and also assumed that γ=(5/7), as the atmosphere is mainly diatomic. Plugging these in, I got that the gas expands to about 1.09 m3, but when I tried to plug that into my last equation, I got that the gas actually HEATS up, which I know is wrong. What did I do wrong? Please help!
 
Physics news on Phys.org
EzequielSeattle said:

Homework Statement


A pocket of air rises 1000 meters. Estimate how much it cools. Use the atmospheric law to determine pressure at 1000 meters.

Homework Equations


P = P0 * e-Mgz/RT
PVγ = constant
TVγ-1 = constant

The Attempt at a Solution


Using the atmospheric law, I found the pressure at 1000 meters to be 90202 Pa, or about 0.89 atm. I'm not sure how to use the adiabatic equations. I just assumed V1 was 1 m3, and also assumed that γ=(5/7), as the atmosphere is mainly diatomic. Plugging these in, I got that the gas expands to about 1.09 m3, but when I tried to plug that into my last equation, I got that the gas actually HEATS up, which I know is wrong. What did I do wrong? Please help!

What is gamma? it should be the ratio of Cp/Cv, correct? Which is larger, Cp or Cv ? Should gamma be greater or less than one?
 
Thank you! I was accidentally using γ=5/7 instead of 7/5. It works now.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top