Calculating Escape Velocity for Reaching Altitude of 800km

AI Thread Summary
To calculate the escape velocity needed to reach an altitude of 800 km, the relevant equations involve kinetic energy (KE) and gravitational potential energy (GPE). The initial velocity must account for the gravitational potential energy at both the Earth's surface and at 800 km altitude. The final calculations yield an escape velocity of approximately 3.74 x 10^3 m/s, confirming the correct approach to the problem. The discussion emphasizes the importance of including the initial potential energy when determining the minimum velocity required for the projectile. Overall, the calculations align with the principles of energy conservation in a vacuum.
naeblis
Messages
26
Reaction score
0
Q: In the absenceof air resistance, the least speed with which a body must be projected vertically upward from the Earth's surface if it is to reach an altitude of 800km is...

800km = 8.00x10^5 m
radius of Earth = 6.37x10^6 m
mass of Earth = 5.99x10^24 kg

Kf +Uf = Ki + Ui
0 + 0 = 1/2 mv^2 + (- G Me m / Re + 800km )
1/2 mv^2 = G Me m / Re +800km
m drops out
v = square root of [ (2)(6.67x10^-11)(5.99x10^24)/(7.17x10^6) ]
v = 1.06x10^4 m/s

is this right? thanks in advance for the help
 
Physics news on Phys.org
Look at your Uf and Ui. Are you sure that Uf is 0? Are you sure about that expression for Ui?

-Dale
 
The change in kinetic energy = change in gravitational potential energy if one neglects air resistance (i.e. nonconservative forces).

http://hyperphysics.phy-astr.gsu.edu/hbase/gpot.html

So the objective is to find the initial velocity at which a projectile will leave the Earth's surface, r1 = re, and travel to a radius, r2 = re + 800 km.

So there is an initial KE and GPE and a final KE and GPE, the total energy (KE + GPE) being equal. KE = kinetic energy and GPE being gravitational potential energy.

The minimum speed coincides with KEf = 0, and thus KEi = 1/2 mvi2 = \DeltaGPE.
 
Your initial potential energy muz include the energy of the body on the surface of the earth... It's not zero.
 
ok i think i have it now

Kf + Uf = Ki + Ui
0 [because its a minimum velocity] + ( -G Me m / Re +800km ) [potential at 800km] = 1/2 m v^2 + ( -G Me m / Re ) [potential at the begining, the surface of the earth]

then through some algebra we can solve for v

2 [ {-(6.67x10^-11)(5.98x10^24)/(6.37x10^6)+(8.00x10^5)} + {(6.67x10^-11)(5.98x10^24)/(6.37x10^6)} ] = v^2

v = 3.74x10^3 m/s is this right?

hoping my arithmetic is right but i think i got it thanks in advancefor verification!
 
Yup.. tat shld be the correct ans.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top