Calculating Max Flow Rate Through Pipe System

AI Thread Summary
Calculating the maximum flow rate through a 4" SDR 11 HDPE pipe system involves considering the pipe's internal diameter, elevation change, and roughness value. The user seeks to determine the appropriate centrifugal pump size to achieve the desired flow rate, noting the challenge of lacking initial velocity or flow rate data. A system diagram can help model flow loss and select a pump characteristic curve for optimal performance. Adding a second pump in series can increase flow rate by combining head ratings, but careful placement is crucial to avoid exceeding the pipe's pressure rating. Ultimately, the decision on pump placement—whether at the source or downstream—will impact the system's pressure and flow dynamics.
Jbucky21389
Messages
2
Reaction score
0
Is it possible to calculate the max flow rate (gals/m) achievable through a given piping system with only the following variables?

- 4" SDR 11 HDPE pipe (3.633" ID)
- 28,000 feet of pipe from source to destination
- 90' of elevation change from source to destination
- destination is another pond, pipe is open ended and 90' higher than source.
- 150 roughness value

I'm trying to figure out what size of centrifugal pump to place at the source pond and what flow rate is possible. I'm not very smart about this type of thing. I Googled it, but every calculator I found wanted either velocity or flow rate, which I don't know because there is no pump there yet..? Thank you.
 
Physics news on Phys.org
When I designed piping systems as an ancillary job, my component catalogues all listed flow loss D/L per component or foot. Use that to model the system - a system diagram - pick your pump characteristic (curve) to intersect the system diagram at your desired flow rate.
 
Last edited:
Great, got that figured out. Thanks. Now, I have another question... how would adding another pump in series affect the pressure on the pipe? I understand that with two centrifugal pumps in series, having equal specifications, you would add their head ratings together which would slide the desired flow rate further out on the system curve thereby increasing the flow rate. I guess what I'm trying to get at is to get better flow rate would I put the series "booster" centrifugal pump piggy-backed onto the discharge of the first pump right at the source, or would I be better off to put it a couple miles downstream in the piping system? Putting it in series right at the source pond pump would probably increase the pressure at the outlet of the booster pump so much so that the pipe's pressure rating would be exceeded?
 
comparing a flat solar panel of area 2π r² and a hemisphere of the same area, the hemispherical solar panel would only occupy the area π r² of while the flat panel would occupy an entire 2π r² of land. wouldn't the hemispherical version have the same area of panel exposed to the sun, occupy less land space and can therefore increase the number of panels one land can have fitted? this would increase the power output proportionally as well. when I searched it up I wasn't satisfied with...
Back
Top