Calculating the number of turns of a solenoid.

  • Thread starter Thread starter Asmaa Mohammad
  • Start date Start date
  • Tags Tags
    Solenoid
AI Thread Summary
The discussion centers on calculating the number of turns in a solenoid using the formula B = μ Ni/l. Participants express uncertainty about specific steps in the calculation, particularly regarding the applicability of certain formulas to solenoids versus circular coils. It is clarified that the formula is indeed appropriate for solenoids, and the impact of wire thickness on the calculation is acknowledged. A detailed example is provided, showing how to derive the number of turns from given dimensions. Overall, the consensus is that while the standard formula may not be exact, it is practically useful for most scenarios.
Asmaa Mohammad
Messages
182
Reaction score
7

Homework Statement


oNdCA.jpg


Homework Equations


B = μ Ni/l

The Attempt at a Solution


Question no. a:[/B]
tgKdV.jpg

And Q no. b:
8XcD7.jpg


I am not sure about the step in the red circle in the first figure, and my book doesn't give a solution, so what is your opinion?
 
Physics news on Phys.org
Asmaa Mohammad said:
I am not sure about the step in the red circle in the first figure,
Looks good to me.
 
cnh1995 said:
Looks good to me.
I thought it is used in the case of a circular coil, but in the problem we deal with a solenoid, wouldn't this make a difference?
 
Asmaa Mohammad said:
I thought it is used in the case of a circular coil, but in the problem we deal with a solenoid, wouldn't this make a difference?
Actually, it is appropriate for solenoid only. I don't see how you can use it for circular coil with constant radius.
 
cnh1995 said:
Actually, it is appropriate for solenoid only. I don't see how you can use it for circular coil with constant radius.
Suppose you have a wire with a length (l) and you want to make a circular coil with a radius (r), then the number of turns you get will be (N), and you can determine this N as this:
N = l / 2πr
 
Asmaa Mohammad said:
I thought it is used in the case of a circular coil, but in the problem we deal with a solenoid, wouldn't this make a difference?
I see what you mean: it's a helix rather than a circle. But the difference here is negligible, I think.

If the circumference of the solenoid is 20cm, and the pitch (the diameter of the wire) is 0.07356cm, then the length of wire per turn is sqrt(20^2 +0.07356^2)cm = 20.000135 cm giving 249.998 turns from 50m of wire.

But you are correct that in some cases with thick wire or not close wound, this could make a difference.

cnh1995 also makes an interesting point, that you can't wind a coil with several turns and have them all in exactly the same place. The best you might manage is a series of concentric short solenoids each with a slightly larger diameter. I can't agree that the standard formula is exactly correct in either situation, but in practical terms it is probably pretty close in most cases.
 
  • Like
Likes cnh1995
Merlin3189 said:
I see what you mean: it's a helix rather than a circle. But the difference here is negligible, I think.

If the circumference of the solenoid is 20cm, and the pitch (the diameter of the wire) is 0.07356cm, then the length of wire per turn is sqrt(20^2 +0.07356^2)cm = 20.000135 cm giving 249.998 turns from 50m of wire.

But you are correct that in some cases with thick wire or not close wound, this could make a difference.

cnh1995 also makes an interesting point, that you can't wind a coil with several turns and have them all in exactly the same place. The best you might manage is a series of concentric short solenoids each with a slightly larger diameter. I can't agree that the standard formula is exactly correct in either situation, but in practical terms it is probably pretty close in most cases.
OK, I think I understood your point of view, but my answer as a whole is correct or not?
 
Well a) is fine.
I haven't answered b). Everything down to the last 2 lines looks ok and the formula looks familiar, but I don't really remember this quantitative magnetic stuff very well!

With Tesla, Oersted, Gauss, Maxwell, Gilbert and heaven knows how many other named units, not to mention 4pi appearing and disappearing apparently at random, I gave up on it. I try to follow calculations with Amps, metres, Volts, Newtons and so on, but when I see weird units, I stop.
I have the same problem with light - Trollands (both scotopic and photopic), Lamberts, lux, lumens, candels, candellas, candellabras, - and just about any American unit like foot pounds per gallon!
 
Asmaa Mohammad said:
my answer as a whole is correct or not?
Yes.
 
Back
Top