Calculating Water Flow Using a Venturi Meter

  • Thread starter Thread starter HethensEnd25
  • Start date Start date
  • Tags Tags
    Meter Venturi
AI Thread Summary
A venturi meter with a 4-inch to 1-inch diameter measures water flow, with a mercury manometer showing a 1-inch deflection. The discussion highlights the use of the Bernoulli Equation and the continuity equation to calculate the discharge through the larger pipe. The pressure differential indicated by the mercury deflection is crucial for solving the problem. The participant expresses initial confusion about the relevance of the deflection but later confirms that it is essential for determining flow rate. The problem has been solved, and the participant plans to share the final answer after verification.
HethensEnd25
Messages
27
Reaction score
0

Homework Statement


A 4 inch to 1 inch diameter venturi meter is used to measure water flow and it
has a mercury manometer deflection of 1 inch. What is the discharge
through the four inch diameter pipe?

Homework Equations


Bernoulli Equation, manometer formula

The Attempt at a Solution


Thus far my attempt at a solution is using the Reynolds Transport Theorem. I know that for a steady flow process that there will be no change in volume for the control volume. Thus that term will be zero. So now I am left with

∫ρV*dA

I have two diameters given and I know that it is a in-compressible fluid. So my flow in must equal my flow out. I am confused however upon the given information regarding the mercury deflection. Am I to use that deflection to give myself a pressure? Or is that a piece of information that is nonessential in approaching this problem?

Best Regards,

D
 
Physics news on Phys.org
HethensEnd25 said:
Am I to use that deflection to give myself a pressure? Or is that a piece of information that is nonessential in approaching this problem?
The pressure differential is absolutely essential information.
You can use Bernoulli's equation and the continuity equation to solve for flow rate.
 
  • Like
Likes HethensEnd25
Thank you for your insight. I have solved the problem. I will post my answer once I am home to double check.

Best Regards,
D
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top